Sign in

Not a member? | Forgot your Password?

Search Online Books

Search tips

Free Online Books

Free PDF Downloads

A Quadrature Signals Tutorial: Complex, But Not Complicated

Understanding the 'Phasing Method' of Single Sideband Demodulation

Complex Digital Signal Processing in Telecommunications

Introduction to Sound Processing

C++ Tutorial

Introduction of C Programming for DSP Applications

Fixed-Point Arithmetic: An Introduction

Cascaded Integrator-Comb (CIC) Filter Introduction


IIR Filter Design Software

See Also

Embedded SystemsFPGA
Chapter Contents:

Search Physical Audio Signal Processing


Book Index | Global Index

Would you like to be notified by email when Julius Orion Smith III publishes a new entry into his blog?


Amplifier Feedback

A more extreme effect used with distorted electric guitars is amplifier feedback. In this case, the amplified guitar waveforms couple back to the strings with some gain and delay, as depicted schematically in Fig.9.4 [489].

Figure 9.4: Simulation of a basic distorted electric guitar with amplifier feedback.

The Amplifier Feedback Delay in the figure can be adjusted to emphasize certain partial overtones over others. If the loop gain, controllable via the Amplifier Feedback Gain, is greater than 1 at any frequency, a sustained ``feedback howl'' will be produced. Note that in commercial devices, the Pre-distortion gain and Post-distortion gain are frequency-dependent, i.e., they are implemented as pre- and post-equalizers (typically only a few bands, such as three). Another simple choice is an integrator $ g/(1-rz^{-1})$ for the pre-distortion gain, and a differentiator $ (1-rz^{-1})$ for the post-distortion gain.

Faust software implementing electric-guitar amplifier feedback may be found in [454].

Previous: Software for Cubic Nonlinear Distortion
Next: Cabinet Filtering

Order a Hardcopy of Physical Audio Signal Processing

About the Author: Julius Orion Smith III
Julius Smith's background is in electrical engineering (BS Rice 1975, PhD Stanford 1983). He is presently Professor of Music and (by courtesy) of Electrical Engineering at Stanford's Center for Computer Research in Music and Acoustics (CCRMA), teaching courses and pursuing research related to signal processing applied to music and audio systems. See for details.


No comments yet for this page

Add a Comment
You need to login before you can post a comment (best way to prevent spam). ( Not a member? )