Sign in

Not a member? | Forgot your Password?

Search Online Books

Search tips

Free Online Books

Free PDF Downloads

A Quadrature Signals Tutorial: Complex, But Not Complicated

Understanding the 'Phasing Method' of Single Sideband Demodulation

Complex Digital Signal Processing in Telecommunications

Introduction to Sound Processing

C++ Tutorial

Introduction of C Programming for DSP Applications

Fixed-Point Arithmetic: An Introduction

Cascaded Integrator-Comb (CIC) Filter Introduction


FFT Spectral Analysis Software

See Also

Embedded SystemsFPGA
Chapter Contents:

Search Physical Audio Signal Processing


Book Index | Global Index

Would you like to be notified by email when Julius Orion Smith III publishes a new entry into his blog?


Impulse Invariant Method

The impulse-invariant method converts analog filter transfer functions to digital filter transfer functions in such a way that the impulse response is the same (invariant) at the sampling instants [343], [362, pp. 216-219]. Thus, if $ \gamma(t)$ denotes the impulse-response of an analog (continuous-time) filter, then the digital (discrete-time) filter given by the impulse-invariant method will have impulse response $ \gamma(nT)$, where $ T$ denotes the sampling interval in seconds. Moreover, the order of the filter is preserved, and IIR analog filters map to IIR digital filters. However, the digital filter's frequency response is an aliased version of the analog filter's frequency response.9.3

To derive the impulse-invariant method, we begin with the analog transfer function

$\displaystyle \Gamma_a(s) \isdefs \frac{B_a(s)}{A_a(s)} \isdefs \frac{b_a(0) s^...
...omment_mark>2028 s^{N} + a_a(1) s^{N-1} + \cdots + a_a(N-1)s + a_a(N)} \protect$ (9.1)

and perform a partial fraction expansion (PFE) down to first-order terms [449]:9.4

$\displaystyle \Gamma_a(s) \eqsp \sum_{i=1}^N \frac{K_i}{s-s_i},

where $ s_i$ is the $ i$th pole of the analog system, and $ K_i$ is its residue [449]. Assume that the system is at least marginally stable [449] so that there are no poles in the right-half plane ( $\mbox{re\ensuremath{\left\{s_i\right\}}}\le 0$). Such a PFE is always possible when $ \Gamma (s)$ is a strictly proper transfer function (more poles than zeros [449]).9.5 Performing the inverse Laplace transform on the partial fraction expansion we obtain the impulse response in terms of the system poles and residues:

$\displaystyle \gamma_a(t) \eqsp \sum_{i=1}^N K_i e^{s_i t}, \quad t\ge 0.

We now sample at intervals of $ T$ seconds to obtain the digital impulse response

$\displaystyle \gamma_d(n) \isdefs \gamma_a(nT) \eqsp \sum_{i=1}^N K_i e^{s_i nT}, \quad n= 0,1,2,\ldots\,.

Taking the z transform gives the digital filter transfer function designed by the impulse-invariant method:

$\displaystyle \Gamma_d(z) \eqsp \sum_{i=1}^N \frac{K_i}{1 - e^{s_iT}z^{-1}} \isdefs \frac{B_d(z)}{A_d(z)}

We see that the $ s$-plane poles $ s_i$ have mapped to the $ z$-plane poles

$\displaystyle \zbox {z_i \isdefs e^{s_iT}} \protect$ (9.2)

and the residues have remained unchanged. Clearly we must have $-\pi
< \mbox{im\ensuremath{\left\{s_i\right\}}} T < \pi$, i.e., the analog poles must lie within the bandwidth spanned by the digital sampling rate $ f_s=1/T$. Otherwise, the pole angle $\mbox{im\ensuremath{\left\{s_i\right\}}} T$ will be aliased into the interval $ [-\pi,\pi)$. Stability is preserved since $\mbox{re\ensuremath{\left\{s_i\right\}}} \le 0 \;\Leftrightarrow\;
\vert z_i\vert \le 1$.

Note that the series combination of two digital filters designed by the impulse-invariant method is not impulse invariant. In other terms, the convolution of two sampled analog signals is not the same as the sampled convolution of those analog signals. This is easy to see when aliasing is considered. For example, let one signal be the impulse response of an ideal lowpass filter cutting off below half the sampling rate. Then this signal will not alias when sampled, and its convolution with any second signal will similarly not alias when sampled. However, if the second signal does alias upon sampling, then this aliasing is gone when the convolution precedes the sampling, and the results cannot be the same in the two cases.

Previous: Sampling the Impulse Response
Next: Matched Z Transformation

Order a Hardcopy of Physical Audio Signal Processing

About the Author: Julius Orion Smith III
Julius Smith's background is in electrical engineering (BS Rice 1975, PhD Stanford 1983). He is presently Professor of Music and (by courtesy) of Electrical Engineering at Stanford's Center for Computer Research in Music and Acoustics (CCRMA), teaching courses and pursuing research related to signal processing applied to music and audio systems. See for details.


No comments yet for this page

Add a Comment
You need to login before you can post a comment (best way to prevent spam). ( Not a member? )