#### Sample-Mean Variance

The simplest case to study first is the *sample mean*:

*i.e.*,

**Var**

Then the variance of our sample-mean estimator can be calculated as follows:

where we used the fact that the time-averaging operator is linear, and denotes the unbiased autocorrelation of . If is white noise, then , and we obtain

We have derived that the variance of the -sample running average of a white-noise sequence is given by , where denotes the variance of . We found that the variance is inversely proportional to the number of samples used to form the estimate. This is how averaging reduces variance in general: When averaging independent (or merely uncorrelated) random variables, the variance of the average is proportional to the variance of each individual random variable divided by .

**Next Section:**

Sample-Variance Variance

**Previous Section:**

Time-Bandwidth Products are Unbounded Above