Not a member?

# Discussion Groups | Comp.DSP | understanding wavelet transform in image processing....

There are 8 messages in this thread.

You are currently looking at messages 1 to .

Is this discussion worth a thumbs up?

0

# understanding wavelet transform in image processing.... - brettcooper - 2012-09-05 12:58:00

Dear Forum,

I am learning about wavelets and image processing. I have seen how the
wavelet transform of an image looks like: it is a bunch of subimages that
seem low pass and high pass filtered versions of the original image....

That is not what I expected the wavelet transform to look like after
studying the continuous one-dimensional wavelet transform, which represents
the coefficients of the various wavelets once the mother wavelet is
chosen....

Does anyone have any hint on how to interpret the wavelet transform of an
image and all its subimages?

Is each of those filtered subimages representing wavelet coefficients?
In the case of the Fourier transform, the transform itself does not look
anything like a filtered version of the original image itself...same goes
for the 1D continuous wavelet transform...

thanks
brett
______________________________

# Re: understanding wavelet transform in image processing.... - maury - 2012-09-05 17:09:00

On Wednesday, September 5, 2012 11:58:55 AM UTC-5, brettcooper wrote:
> Dear Forum, I am learning about wavelets and image processing. I have seen how the wavelet
transform of an image looks like: it is a bunch of subimages that seem low pass and high pass
filtered versions of the original image.... That is not what I expected the wavelet transform to
look like after studying the continuous one-dimensional wavelet transform, which represents the
coefficients of the various wavelets once the mother wavelet is chosen.... Does anyone have any
hint on how to interpret the wavelet transform of an image and all its subimages? Is each of
those filtered subimages representing wavelet coefficients? In the case of the Fourier
transform, the transform itself does not look anything like a filtered version of the original
image itself...same goes for the 1D continuous wavelet transform... thanks brett

Brett,
If you're looking at images and wavelets, then you are using the discrete wavelet transform,
which is not the same "animal" as the continuous wavelet transform. Where the
continuous is a series of translations and dilations, the discrete is a series of filter banks
with disimation. The filter banks form a low-pass and high-pass filter.

Look at  block diagram of the discrete transform, and I think what you are seeing will make
sense to yo.

Maurice
______________________________

# Re: understanding wavelet transform in image processing.... - brettcooper - 2012-09-06 10:29:00

Thanks Maurice,
transforms must be somehow similar, right?

In 1D, I am able to see the relationship and how the discrete version
approximates the continuous WT. But in 2D it seems that the discrete
wavelet transform is just filtering at different scales...

Brett
______________________________

# Re: understanding wavelet transform in image processing.... - maury - 2012-09-06 17:40:00

On Thursday, September 6, 2012 9:29:16 AM UTC-5, brettcooper wrote:
> Thanks Maurice, I followed your advice. But the continuous and the discrete wavelet
transforms must be somehow similar, right? In 1D, I am able to see the relationship and how the
discrete version approximates the continuous WT. But in 2D it seems that the discrete wavelet
transform is just filtering at different scales... Brett

The DWT is a series of filters. First do a low-pass and high-pass disimating each ouypuy by 2.
Store the high-pass. You now have 2 of your original image, each i/2 the size of the original.
Now do the same thing again, but only on the low-pass output. Again you have 2 images, but this
time they are 1/4 the size of the original. At this point, you have 3 images, one that is 1/2
the original size, and 2 that are 1/4 the original size. Keep doing this for as loag as you want
or can.

The CWT and DWT are not the same animal. Get a copy of Mallot's paper on multi-resolution.

Does this help to show what you are seeing?
______________________________

# Re: understanding wavelet transform in image processing.... - 2012-09-11 10:57:00

On Wednesday, September 5, 2012 6:58:55 PM UTC+2, brettcooper wrote:
> Dear Forum,
>
>
>
> I am learning about wavelets and image processing. I have seen how the
>
> wavelet transform of an image looks like: it is a bunch of subimages that
>
> seem low pass and high pass filtered versions of the original image....
>
>
>
> That is not what I expected the wavelet transform to look like after
>
> studying the continuous one-dimensional wavelet transform, which represents
>
> the coefficients of the various wavelets once the mother wavelet is
>
> chosen....
>
>
>
> Does anyone have any hint on how to interpret the wavelet transform of an
>
> image and all its subimages?
>
>
>
> Is each of those filtered subimages representing wavelet coefficients?
>
> In the case of the Fourier transform, the transform itself does not look
>
> anything like a filtered version of the original image itself...same goes
>
> for the 1D continuous wavelet transform...
>
>
>
> thanks
>
> brett

There is some history, wavelet poped up in the mind of various engineers, for different needs.
One such is Morlet, for seismical echoes data for searching for oil. Continuous wavelets.

Another is Daubechie, Orthogonal or biorthogonal wavelet, after the maths guys went cleaning the
house and put common vocabularies on top of it. Oh she is one of them, BTW.

Orthogonal or Bi-orthogonal also means a minimum basis able to reconstruct the signal with no or
only a residue error you can still continue to encode. So you end-up with the dyadic grid.

It all depends on the end needs.

______________________________

# Re: understanding wavelet transform in image processing.... - 2012-09-11 11:08:00

On Wednesday, September 5, 2012 6:58:55 PM UTC+2, brettcooper wrote:

>
> Is each of those filtered subimages representing wavelet coefficients?

yes

>
> In the case of the Fourier transform, the transform itself does not look
>
> anything like a filtered version of the original image itself...same goes
>
> for the 1D continuous wavelet transform...

It's a to restricitve view of thinking of the filter function of wavelet as a brickwall filter
or lengthy sinc for the lowpass, i.e., the design of the filter function is very specific for
wavelet, comes with a different "cahier des charges" in french.

Lowpass, highpass, is a shortcut word, a tad to approximative.

There's a connection, at least in audio, btwn filter banks and wavelet. They are some prerequist
conditions, though.

> thanks
>
> brett

______________________________

# Re: understanding wavelet transform in image processing.... - 2012-09-12 03:11:00

Philippe,

Orthogonality and projections, except for 3D space is somewhat hard to get an intuition. For
functions, we know all the smooth sine and cosine, but beyond that, also, intuition is somewhat
lacking.

There's a brilliant* book that came out on wavelet recently:

wavelet
a concise guide
by amri-homayoon najmi
john hopkins university press

on page 111 and 112 you'll see an explanation using the haar function & wavelet. This is the
departure in the book from the part about the continuous wavelet (morlet & co) to the
orthogonal (mallat, daubechie & co) wavelets. Departure in the book, a connection,
intersection about the whole wavelet topic, or both families.

Also, about orthogonality of functions, you may play a bit with the hilber xform under matlab on
a compact test signal.

(* and thinner than the mallat one - a must have to impress the girls at the beach :^)

On Tuesday, September 11, 2012 5:08:53 PM UTC+2, kelvin....@gmail.com wrote:
> On Wednesday, September 5, 2012 6:58:55 PM UTC+2, brettcooper wrote:
>
>
>
> >
>
> > Is each of those filtered subimages representing wavelet coefficients?
>
>
>
> yes
>
>
>
> >
>
> > In the case of the Fourier transform, the transform itself does not look
>
> >
>
> > anything like a filtered version of the original image itself...same goes
>
> >
>
> > for the 1D continuous wavelet transform...
>
>
>
> It's a to restricitve view of thinking of the filter function of wavelet as a brickwall
filter or lengthy sinc for the lowpass, i.e., the design of the filter function is very specific
for wavelet, comes with a different "cahier des charges" in french.
>
>
>
> Lowpass, highpass, is a shortcut word, a tad to approximative.
>
>
>
> There's a connection, at least in audio, btwn filter banks and wavelet. They are some
prerequist conditions, though.
>
>
>
> > thanks
>
> >
>
> > brett

______________________________