DSPRelated.com
Forums

DFT VS DTFT

Started by praveen July 21, 2003
"hans" <nospam@microsoft.com> wrote in message
news:3f211e89$0$49116$e4fe514c@news.xs4all.nl...
> Shouldn't one of the headings be "Amplitude" ? > > > > You can consider four versions of the 1-dimensional Fourier Transform: > > > > Time Frequency > > > > Continuous Continuous >
hans, Hmmmm. I don't think so as far as this table is concerned. I'm talking about the functions. If you allow them to be complex functions then this should be enough shouldn't it? Amplitude is pretty clearly implied. The only distinction I was making her was about continuous vs. discrete. Didn't even mention periodic. Don't we say: "continuous function" instead of "a function whose amplitude is continuously defined from -in to +inf"? Isn't the former description clear enough? Maybe I've missed your point though.... Fred
nitin_hsn@yahoo.com (Nithin) wrote in message news:<96e5ea15.0307211613.fe84778@posting.google.com>...
> Tom <T.Otermans_REMOVE_THIS_@home.nl> wrote in message news:<slrnbho1p5.aeh.T.Otermans_REMOVE_THIS@noritake.basement>... > > praveen <praveenkumar1979@rediffmail.com> wrote: > > > Hello, > > > > > > I wanted to know the difference between discrete fourier transform and > > > discrete time fourier transform. > > > > > > > > > waiting for reply > > > praveen > > > > The DTFT is aperiodic-discrete and the DFT is periodic-discrete. > > > > > > Tom > > > > -- > > Can DFT be viewed as sampled version of DTFT and hence it is periodic? > I am not sure about this but intuitively it is easier to think so.
both the DFT and the DTFT are periodic with identical period (if scaling is matched appropriately). one legitimate version of defining the DFT is that it is the sampled DTFT of the zero-extended x[n] of finite-length. another way of looking at the DFT is that it is the periodic Fourier Series coefs of the discrete x[n] that is periodically extended. sometimes we fight about this topic on comp.dsp. r b-j