COURSE DESCRIPTION
Course Name: Python Applications for Digital Designh and Signal
Processing
Course Start Date: Apr 25, 2024: Orientation, videos released weekly
Q&A Workshops: Thu May 2, 9, 16, 23 4pm-5:30pm EDT
Location: Zoom Meeting
Speaker: Dan Boschen

This is a hands-on course combining pre-recorded lectures with live Q&A/workshop
sessions in the popular and powerful open-source Python programming language.

Pre-Recorded Videos combined with Live Q&A Workshops: The course consists
of pre-recorded video lectures (approx. 3 hours per week) that students can watch on
their own schedule, and an unlimited number of times, prior to live Q&A workshop
sessions on Zoom with the instructor. The Q&A workshops will also be recorded for later
viewing. The videos will also be available to the students for viewing for up to two
months after the conclusion of the course and the instructor is available via Piazza
throughout the course for further interaction and questions.

Overview: Dan provides simple, straight-forward navigation through the multiple
configurations and options, providing a best-practices approach for quickly getting up to
speed using Python for modelling and analysis for applications in signal processing and
digital design verification. Students will be using the Anaconda distribution, which
combines Python with the most popular data science applications, and Jupyter
Notebooks for a rich, interactive experience.

The course begins with basic Python data structures and constructs, including key
"Pythonic" concepts, followed by an overview and use of popular packages for scientific
computing enabling rapid prototyping for system design.

During the course students will create example fixed-point designs including a sigma
delta converter, direct digital synthesizer, numerically controlled oscillator and pseudo-
random number generator. This will include considerations for cycle and bit accurate
models useful for digital design verification (FPGA/ASIC), while bringing forward the
signal processing tools for frequency and time domain analysis.

Spyder IDE

@ Spyder (Python 3.7)
Ele Edt Seach Sourge

D=0 rBBER e)«

Debugging Tools

- Q x
MM<MEW‘1M¥NM
cEEpE BX £ €9 oo T Cs 4
6 X Varisble explorer & x
adnss a
Nome Type Sce Valoe
test int 1 25
File and w1 8
Variable ol
int 1 12
Explorer,
He|p HeD Vorsble explorer | Fle explorer
Python corsole & x
D cmmn | 4]

Type “copyright™, “credits® or “license™ for more information.

== An enhanced Interactive Python,

Data/Info

<wodule “nuspy’ from "C:\<...>ges\\numpy\

<module "matplotlib.pyploc<...>\\matplotlib\

<wodule “scipy’ from "Ci\<...

Interactive
Console

>ges\\scipy\

” script 4id ru
I sdded the vorisbles x and y to be 12

In (3):

|Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AD64)] ~

Amwwh Mstory log

Permissions: RW End-of-hnes: CRIF Encoding: ASCIT Une 5 Columa: 1 Memory: 34 %
Using Scipy

(ﬁ From NCO DAC Output
DDS 1000
750
-
: D 250
NCO DAC o
=250
N
=750
~1000

0 10000 20000 30000 40000 50000 60000

0 10000_,,20000"'3'6600 40000 50000 60000
SMplelmber e Sample Nurrmel
.................................. DAC OUtPUt
1.0 A
0.5 4
0.0 E T T T T T T T
32000 32050 32100 32150 32200 32250 32300

Sample Number

Z IEEE_Python Course/class3/

: Jupyter IEEE Python Course

File Edit View Insert Cell

B+ @ B4 ¥ MR

1.3 Customizing Matplotiib
1.4 Seabom
~ 1.5 Using Deque for FIFO implementations
151 Demonstrating profiling to compare
~ 2 Class Exercise: 2nd Order Delta-Sigma DAC
2.1 Block Diagram of Model
~ 2.2 SD Model that returns an ndarray
~ 2.2.1 Basic constructions used
2.2.1.1 Loops
2.2.1.2 Building the output ndarray
2.2.13 sign() Function
2.2.2 Sigma Delta Function Definition
2.2.3 Example Operation
~ 2.3 SD Model that retums a Generator lterat,
2.3.1 Basic constructions used
23.2 Sigma Delta Generator Function De'
~ 2.3.3 Demonstrations of Generator Opera
2.3.3.1 Calling Generator lterator with i
2.3.3.2 Using Generator Iterator in a for
2.3.3.3 Using Generator Iterator with lis!
2.3.3.4 Using Generator Iterator in a list
2.3.3.5 Using Generator Iterator inside ¢
2.3.3.6 Passing A Generator Interator ir
2337 Instantiating Multiple Models
2.3.4 Verification that List and Generator [
~ 3 Delta Sigma Model for FPGA Verification
3.1 Introspection of FPGA Data File
3.2 Initialize Verification
3.3 Verification Script
~ 4 Example System Testing
41 Create Test Signal
4.2 Generator Delta Sigma Output
4.3 Plot Frequency Spectrum
| 44 Integrate with Output Filter Mode!
4.5 Determine the Equivalent Effective Numl
5 GPS C/A Code Generator
~ 6 NCO Implementation
6.1 Next Design Challenges for NCO:
»

X & IEEE Python Course Class 3

> C O localhost:8888/notebooks/IEEE_Python_Course/class3/IEEE%... ¥t

Class 3 Guosswa)
Kemel Navigate

B | C | » cCode

out[63]:

| In [64]: v

- def sallen_key(R, C, f5):

Widgets

x e

Help
vial|E/l¢lbll~|e||=
Ay = NrCowAIIOIE VUL, 13 = 13,
fft.plot_spectrum(x,y);
plt.title('Output Spactrum (Unfiltered)
#plt.axis([-.15, 0.15, -150, 6])

Output Spectrum (Unfittered)

Magnitude [dBFS)

“

2 0 2
Fraquancy MHz]

Trust

veta =

)

Text(8.5,1, Output Spectrum (Unfiltered)')

4.4 Integrate with Output Filter Model

Analog Sallen-Key Filter

For cutoff = 10KHz, R = 100KQ C = 100pF

= o

~BoOEBERSD

A

ed | Py

10)

Model for 2 section active Sallen Key Low Pass Filt|

Jupyter Notebooks: This course
makes extensive use of Jupyter
Notebooks which combines running
Python code with interactive plots
and graphics for a rich user
experience. Jupyter Notebooks is an
open-source web-based application
(that can be run locally) that allows
users to create and share visually
appealing documents containing
code, graphics, visualizations and
interactive plots. Students will be
able to interact with the notebook
contents and use “take-it-with-you”
results for future applications in
signal processing.

Target Audience: This course is targeted toward users with little to no prior
experience in Python, however familiarity with other modern programming languages
and an exposure to object-oriented constructs is very helpful. Students should be
comfortable with basic signal processing concepts in the frequency and time domain.
Familiarity with Matlab or Octave is not required, but the equivalent operations in
Python using the NumPy package will be provided for those students that do currently
use Matlab and/or Octave for sighal processing applications.

Mutable / Immutable

References Memory
x =25 Name id Int
L—>|s"
y =5.0 " - — S
z = [8,1,2] —
v et 50
z >
int € Tint & int
8 1 2

Iterable and Iterator

“my string”

/
next(x)
Iterator / Iterable

x = iter("my string") “my string"
are not
ITERATORS ITERABLES
are

Benefits of Attending / Goals of Course: Attendees will gain an overall appreciation
of using Python and quickly get up to speed in best practice use of Python and related
tools specific to modeling and simulation for signal processing analysis and design.

All set-up information for the installation of all tools will be provided before
the start of class with a brief orientation meeting on April 25, 2024.

Python for Verification

Python

Behavioral System Model Behavioral System Model

(can be floating point) Fixed Point, bit / Cycle Accurate

System Testing

1 |

Design Specifications Validation

| i

RTL Simulation

RTL Code .
Pre-Synthesis

RTL Simulation

Pre-Synthesis
(Timing Analysis)

GPS Waveform Processing

Captured Data. 1000008 samples

Correlated Symbols for SV24

&0
20
: Baseband Spectrum
v
3
-20 § 0
-40
g
-60
= -20
2 e
23
c
£ -100
-120 =40
-140
-100 -75 -50 -25 00 25 50 75
Frequency [MHz] 000 001

002

Time (3]

003 004

005

Topics / Schedule:

Pre-recorded lectures (3 hours each) will be distributed the week before all Workshop
dates. Workshop/ Q&A Sessions are as follows:

Orientation

Course Kick-off and Orientation: 30-minute orientation meeting to go over getting
started with the course.

Session 1

Topic 1: Intro to Jupyter Notebooks, the Spyder IDE and the course design examples.
Core Python constructs.

Session 2

Topic 2: Core Python constructs; iterators, functions, reading writing data files.

Session 3

Topic 3: Signal processing simulation with popular packages including NumPy, SciPy,
and Matplotlib.

Session 4

Topic 4: Bit/cycle accurate modelling and analysis using the design examples and
simulation packages

Speaker's Bio:

Dan Boschen has a MS in Communications and Signal Processing from Northeastern
University, with over 25 years of experience in system and hardware design for radio
transceivers and modems. He has held various positions at Signal Technologies, MITRE,
Airvana and Hittite Microwave designing and developing transceiver hardware from
baseband to antenna for wireless communications systems and has taught courses on
DSP for over 20 years. Dan is a contributor to dsprelated.com and Signal Processing
Stack Exchange https://dsp.stackexchange.com/, and is currently at Microchip
(formerly Microsemi and Symmetricom) leading design efforts for advanced frequency
and time solutions.

For more background information, please view Dan's LinkedIn page at
https://www.linkedin.com/in/danboschen/.

