COURSE DESCRIPTION
Course Name: Python Applications for Digital Designh and Signal
Processing
Course Start Date: Apr 25, 2024: Orientation, videos released weekly
Q&A Workshops: Thu May 2, 9, 16, 23 4pm-5:30pm EDT
Location: Zoom Meeting
Speaker: Dan Boschen

This is a hands-on course combining pre-recorded lectures with live Q&A/workshop
sessions in the popular and powerful open-source Python programming language.

Pre-Recorded Videos combined with Live Q&A Workshops: The course consists
of pre-recorded video lectures (approx. 3 hours per week) that students can watch on
their own schedule, and an unlimited number of times, prior to live Q&A workshop
sessions on Zoom with the instructor. The Q&A workshops will also be recorded for later
viewing. The videos will also be available to the students for viewing for up to two
months after the conclusion of the course and the instructor is available via Piazza
throughout the course for further interaction and questions.

Overview: Dan provides simple, straight-forward navigation through the multiple
configurations and options, providing a best-practices approach for quickly getting up to
speed using Python for modelling and analysis for applications in signal processing and
digital design verification. Students will be using the Anaconda distribution, which
combines Python with the most popular data science applications, and Jupyter
Notebooks for a rich, interactive experience.

The course begins with basic Python data structures and constructs, including key
"Pythonic" concepts, followed by an overview and use of popular packages for scientific
computing enabling rapid prototyping for system design.

During the course students will create example fixed-point designs including a sigma
delta converter, direct digital synthesizer, numerically controlled oscillator and pseudo-
random number generator. This will include considerations for cycle and bit accurate
models useful for digital design verification (FPGA/ASIC), while bringing forward the
signal processing tools for frequency and time domain analysis.
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Jupyter Notebooks: This course
makes extensive use of Jupyter
Notebooks which combines running
Python code with interactive plots
and graphics for a rich user
experience. Jupyter Notebooks is an
open-source web-based application
(that can be run locally) that allows
users to create and share visually
appealing documents containing
code, graphics, visualizations and
interactive plots. Students will be
able to interact with the notebook
contents and use “take-it-with-you”
results for future applications in
signal processing.

Target Audience: This course is targeted toward users with little to no prior
experience in Python, however familiarity with other modern programming languages
and an exposure to object-oriented constructs is very helpful. Students should be
comfortable with basic signal processing concepts in the frequency and time domain.
Familiarity with Matlab or Octave is not required, but the equivalent operations in
Python using the NumPy package will be provided for those students that do currently
use Matlab and/or Octave for sighal processing applications.
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Benefits of Attending / Goals of Course: Attendees will gain an overall appreciation
of using Python and quickly get up to speed in best practice use of Python and related
tools specific to modeling and simulation for signal processing analysis and design.

All set-up information for the installation of all tools will be provided before
the start of class with a brief orientation meeting on April 25, 2024.
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Topics / Schedule:

Pre-recorded lectures (3 hours each) will be distributed the week before all Workshop
dates. Workshop/ Q&A Sessions are as follows:

Orientation

Course Kick-off and Orientation: 30-minute orientation meeting to go over getting
started with the course.

Session 1

Topic 1: Intro to Jupyter Notebooks, the Spyder IDE and the course design examples.
Core Python constructs.

Session 2

Topic 2: Core Python constructs; iterators, functions, reading writing data files.

Session 3

Topic 3: Signal processing simulation with popular packages including NumPy, SciPy,
and Matplotlib.

Session 4

Topic 4: Bit/cycle accurate modelling and analysis using the design examples and
simulation packages

Speaker's Bio:

Dan Boschen has a MS in Communications and Signal Processing from Northeastern
University, with over 25 years of experience in system and hardware design for radio
transceivers and modems. He has held various positions at Signal Technologies, MITRE,
Airvana and Hittite Microwave designing and developing transceiver hardware from
baseband to antenna for wireless communications systems and has taught courses on
DSP for over 20 years. Dan is a contributor to dsprelated.com and Signal Processing
Stack Exchange https://dsp.stackexchange.com/, and is currently at Microchip
(formerly Microsemi and Symmetricom) leading design efforts for advanced frequency
and time solutions.

For more background information, please view Dan's LinkedIn page at
https://www.linkedin.com/in/danboschen/.




