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Let x,, be a real sequence of length N with Fourier transform X (w) = U(w) +
JjV(w), where U(w) and V(w) are the real and imaginary parts of the Fourier
transform, respectively. The magnitude squared of the Fourier transform of x,,
is then given by | X (w)|? = U(w)? + V(w)?.

Another real sequence y,, of length 2N is constructed from x,, by appending
a flipped version of x,, to x,. That is,

T , for n=0..N-1

TON—n—1 , for n=N..2N —1

The Fourier transform of y,, is
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where the time shift and time reversal properties of the Fourier transform has
been used. Because z,, is a real sequence, we have X (—w) = U(w) — jV (w). We
can then get an expression for Y (w) in polar form

Y(w)

Ulw) +jV(w) +e N (U(w) -V (w) (8)
U(w) (1 + e*jw<2N*1>) + 5V (w) (1 - w’w@N*l)) (©)

i, 2N=1) o (2N=1) i, eN=1) . i, (2N=1) i, 2N=1)
eI (U(w) (ej 7 e T2 )—I—jV(w) (ej T —e #@g)

9w 5 (U(w) cos (w(QN21)) ~ V(w)sin (w(2N21)>) (11)

where from the magnitude spectrum of Y (w) is directly available. We can then
write for the power spectrum of y,
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So the function K (w) that is multiplied to the power spectrum of x,, oscillates
between 0 and 1. In fact, K(w) can be written
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