Data-flipping

Date: 6/6 2012
Author: Thomas B. Niarn (n.i.a.r.e.n.9.at.g.m.a.i.l...c.o.m)
Let x_{n} be a real sequence of length N with Fourier transform $X(\omega)=U(\omega)+$ $j V(\omega)$, where $U(\omega)$ and $V(\omega)$ are the real and imaginary parts of the Fourier transform, respectively. The magnitude squared of the Fourier transform of x_{n} is then given by $|X(\omega)|^{2}=U(\omega)^{2}+V(\omega)^{2}$.

Another real sequence y_{n} of length $2 N$ is constructed from x_{n} by appending a flipped version of x_{n} to x_{n}. That is,

$$
y_{n}= \begin{cases}x_{n} & , \quad \text { for } \quad n=0 \ldots N-1 \tag{1}\\ x_{2 N-n-1} & , \quad \text { for } \quad n=N \ldots 2 N-1\end{cases}
$$

The Fourier transform of y_{n} is

$$
\begin{align*}
Y(\omega) & =\sum_{n=0}^{2 N-1} y_{n} e^{-j \omega n} \tag{2}\\
& =\sum_{n=0}^{N-1} x_{n} e^{-j \omega n}+\sum_{n=N}^{2 N-1} x_{2 N-n-1} e^{-j \omega n} \tag{3}\\
& =X(\omega)+\sum_{n=0}^{N-1} x_{N-n-1} e^{-j \omega(n+N)} \tag{4}\\
& =X(\omega)+e^{-j \omega N} \sum_{n=0}^{N-1} x_{-(n-(N-1))} e^{-j \omega n} \tag{5}\\
& =X(\omega)+e^{-j \omega N} e^{-j \omega(N-1)} X(-\omega) \tag{6}\\
& =X(\omega)+e^{-j \omega(2 N-1)} X(-\omega) \tag{7}
\end{align*}
$$

where the time shift and time reversal properties of the Fourier transform has been used. Because x_{n} is a real sequence, we have $X(-\omega)=U(\omega)-j V(\omega)$. We can then get an expression for $Y(\omega)$ in polar form

$$
\begin{align*}
Y(\omega) & =U(\omega)+j V(\omega)+e^{-j \omega(2 N-1)}(U(\omega)-j V(\omega)) \tag{8}\\
& =U(\omega)\left(1+e^{-j \omega(2 N-1)}\right)+j V(\omega)\left(1-e^{-j \omega(2 N-1)}\right) \tag{9}\\
& =e^{-j \omega \frac{(2 N-1)}{2}}\left(U(\omega)\left(e^{j \omega \frac{(2 N-1)}{2}}+e^{-j \omega \frac{(2 N-1)}{2}}\right)+j V(\omega)\left(e^{j \omega \frac{(2 N-1)}{2}}-e^{-j \omega \frac{(2 N-1)}{2}}(1)\right)\right) \\
& =2 e^{-j \omega \frac{(2 N-1)}{2}}\left(U(\omega) \cos \left(\omega \frac{(2 N-1)}{2}\right)-V(\omega) \sin \left(\omega \frac{(2 N-1)}{2}\right)\right) \tag{11}
\end{align*}
$$

where from the magnitude spectrum of $Y(\omega)$ is directly available. We can then write for the power spectrum of y_{n}

$$
\begin{align*}
|Y(\omega)|^{2} & =4\left(U(\omega)^{2}+V(\omega)^{2}\right) \frac{\left(U(\omega) \cos \left(\omega \frac{(2 N-1)}{2}\right)-V(\omega) \sin \left(\omega \frac{(2 N-1)}{2}\right)\right)_{2}^{2}}{U(\omega)^{2}+V(\omega)^{2}} \\
& =4|X(\omega)|^{2} K(\omega) \tag{13}
\end{align*}
$$

For the function $K(\omega)$ we have

$$
\begin{align*}
K(\omega) & =\frac{U^{2} \cos ^{2}(\omega Q)+V^{2} \sin ^{2}(\omega Q)-2 U V \cos (\omega Q) \sin (\omega Q)}{U^{2}+V^{2}} \tag{14}\\
& =\frac{U^{2}\left(1-\sin ^{2}(\omega Q)\right)+V^{2}\left(1-\cos ^{2}(\omega Q)\right)-2 U V \cos (\omega Q) \sin (\omega Q)}{U^{2}+V^{2}}(15) \\
& =\frac{U^{2}+V^{2}-\left(U^{2} \sin ^{2}(\omega Q)+V^{2} \cos ^{2}(\omega Q)+2 U V \cos (\omega Q) \sin (\omega Q)\right)}{U^{2}+V^{2}} \\
& =\frac{U^{2}+V^{2}-(U \sin (\omega Q)+V \cos (\omega Q))^{2}}{U^{2}+V^{2}} \tag{17}\\
& \leq 1 \tag{18}
\end{align*}
$$

So the function $K(\omega)$ that is multiplied to the power spectrum of x_{n} oscillates between 0 and 1 . In fact, $K(\omega)$ can be written

$$
\begin{equation*}
K(\omega)=\sin ^{2}\left(\omega \frac{(2 N-1)}{2}+\theta(\omega)\right) \tag{19}
\end{equation*}
$$

where

$$
\theta(\omega)= \begin{cases}\arcsin \left(\frac{X}{\sqrt{X^{2}+Y^{2}}}\right) & , \quad \text { for } X \geq 0 \tag{20}\\ \pi-\arcsin \left(\frac{X}{\sqrt{X^{2}+Y^{2}}}\right) & , \quad \text { for } X<0\end{cases}
$$

