
Generating Complex Baseband and Analytic Bandpass Signals by Richard Lyons, Nov. 2011

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of *reference* table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog $x_{bp}(t)$ bandpass signal whose spectrum is shown in Figure 1(a), or discrete input $x_{bp}(n)$ bandpass signal whose spectrum is shown in Figure 1(b), a complex baseband signal is an $x_{BB}(n)$ sequence whose spectrum is that shown in Figure 1(c). The sample rate of an $x_{bp}(n)$ input sequence is defined as f_s Hz.

Based on the same analog $x_{bp}(t)$ or discrete $x_{bp}(n)$ input bandpass signal, an analytic bandpass signal is an $x_{ABP}(n)$ sequence whose spectrum is that shown in Figure 1(d).

I realize that, by strict definition, an analytic signal has no negativefrequency spectral energy. And because our $x_{ABP}(n)$ output bandpass signal is a discrete sequence it has spectral replications in its negative-frequency spectral region—So calling $x_{ABP}(n)$ an analytic signal seems incorrect. We'll bypass that controversy by saying that a discrete sequence is *analytic* if it has no spectral energy in the frequency range of $-f_s/2$ to zero Hz. Table 1, below, presents my Hit Parade of complex baseband and analytic bandpass signal generation methods. In that table "LPF" means a lowpass, linear-phase, tapped-delay line, FIR filter. All discrete Fourier transforms (DFTs) are implemented with radix-2 fast Fourier transforms (FFTs).

Table 1:	Complex	baseband	and	analvtic	bandpass	signal	generation	methods
10010 10	0011191011	2000200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	anaryoro	Sanapabb	Drgmar	generacton	110011000

Process	Input/Output	Comments
Quadrature Sampling $x_{cos}(t)$ LPF $i(t)$ A/D $x_{l}(n)$ $x_{bp}(t)$ $cos(2\pi f_c t)$ f_s $x_{sin}(t)$ LPF $q(t)$ A/D $x_{q}(n)$ $-sin(2\pi f_c t)$ $x_{BB}(n) = x_{l}(n) + jx_{q}(n)$	Input: analog bandpass signal centered at f_c Hz, with sample rate of f_s Hz Output: discrete complex $x_{BB}(n)$ baseband signal, centered at zero Hz, with sample rate of f_s Hz.	Uses analog mixing and analog lowpass filters. Difficult to control the exact phase delays and gains of the $i(t)$ and $q(t)$ signals.
Quadrature Sampling $x_{bp}(t)$ A/D $x_{bp}(n)$ $x_{cos}(n)$ $PF \rightarrow x_{l}(n)$ $f_{s} = 4f_{c} = 1/t_{s}$ $x_{sin}(n)$ $PF \rightarrow x_{Q}(n)$ $-sin(2\pi n/4)$ $x_{BB}(n) = x_{l}(n) + jx_{Q}(n)$	Input: analog bandpass signal centered at f_c Hz, with sample rate of f_s Hz. Output: discrete complex $x_{BB}(n)$ baseband signal, centered at zero Hz, with sample rate of f_s Hz.	All-digital downconversion facilitates exact control of phases and gains of the $x_I(n)$ and $x_Q(n)$ signals. A/D's f_s sample rate normally equal to $4f_c$, but setting $f_s = 0.8f_c$ allows bandpass sampling to reduce the f_s sample rate. f_s must greater than twice the bandwidth of $x_{bp}(t)$. See [1] or Section 8.9 of [2].
Discrete Complex Downconversion $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	Input: discrete real bandpass signal centered at $f_s/4$ Hz, with sample rate of f_s Hz. Output: discrete complex $x_{BB}(n)$ baseband signal, centered at zero Hz, with sample rate of $f_s/4$ Hz.	Uses a time-domain Hilbert transformer and a half-band highpass FIR filter. If $h_{\text{hilb}}(k)$ has an odd number of taps, then half its coefficients will be zero-valued. See [3] or Section 13.43 of [2].

Table 1 Cont'd:

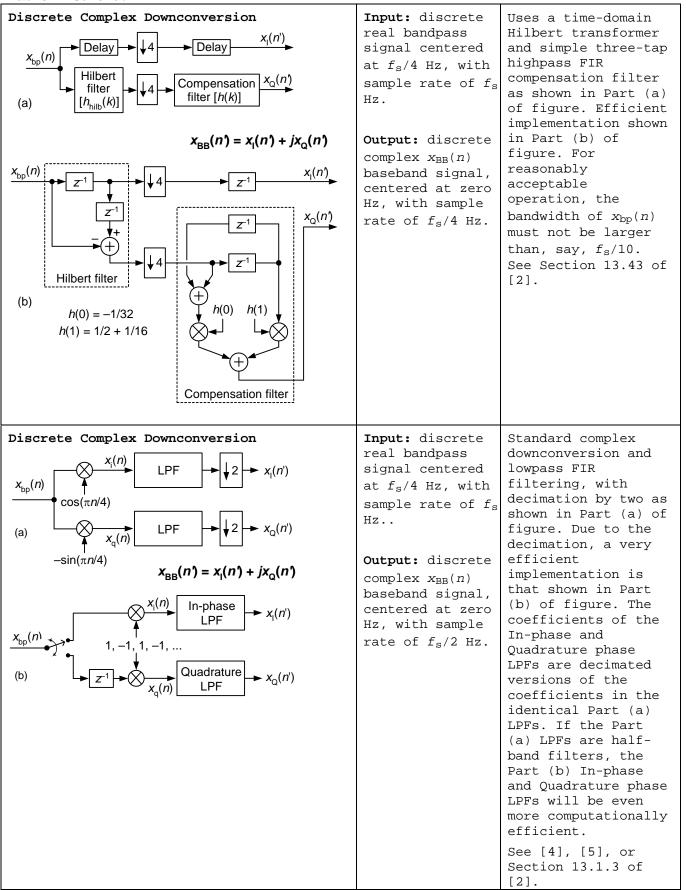
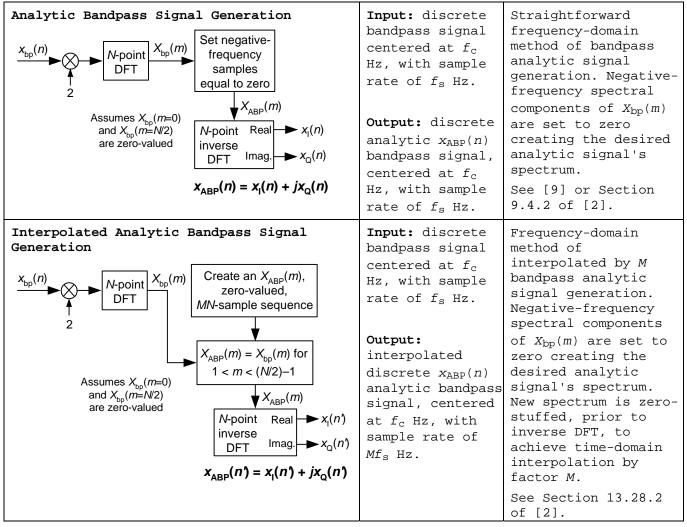



Table 1 Cont'd:

Table 1 Cont'd:		
Discrete Complex Downconversion $x_{bp}(n)$ y_{DFT} $x_{bp}(m)$ Set negative- frequency samples equal to zero Assumes $X_{bp}(m=0)$ and $X_{bp}(m=N/2)$ are zero-valued $X_{BB}(m)$ Circular rotate all samples in negative-freq direction $X_{BB}(m)$ N-point Real inverse DFT Imag. $x_{Q}(n)$ $x_{BB}(n) = x_{I}(n) + jx_{Q}(n)$	Input: discrete real bandpass signal centered at f_c Hz, with sample rate of f_s Hz. Output: discrete complex $x_{BB}(n)$ baseband signal, centered at zero Hz, with sample rate of f_s Hz.	Negative-frequency components of $x_{bp}(n)$ are attenuated in the frequency domain. Frequency downconversion performed by shifting (rotating) the frequency-domain indices of the positive-frequency spectral samples prior to inverse DFT.
Discrete Complex Downconversion $x_{bp}(n)$ 2 $X_{bp}(m)$ Set negative- frequency samples equal to zero $X_{ABP}(m)$ N-point Real inverse DFT Imag. D $X_{BB}(n) = x_{l}(n) + jx_{Q}(n)$	Input: discrete real bandpass signal centered at kf_s/D Hz, with sample rate of f_s Hz. Output: discrete complex $x_{BB}(n)$ baseband signal, centered at zero Hz, with sample rate of f_s/D Hz.	Negative-frequency components of $x_{bp}(n)$ are attenuated in the frequency domain. Frequency downconversion performed by decimation in the time domain. See Section 13.29 of [2].
Analytic Bandpass Signal Generation $x_{bp}(n)$ $(N-1)$ -sample delay $x_{l}(n)$ N -tap FIR, $h_{hilb}(k)$, $x_{Q}(n)$ Hilbert transformer $x_{Q}(n)$ $x_{ABP}(n) = x_{l}(n) + jx_{Q}(n)$	Input: discrete bandpass signal centered at f_c Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample rate of f_s Hz.	Standard time- domain, tapped-delay line, FIR Hilbert transform method of discrete analytic bandpass signal generation. For proper time synchronization of $x_{I}(n)$ and $x_{Q}(n)$, N must be an odd number-in which case half the $h_{hilb}(k)$ coefficients will be zero-valued. See Note 61 of [7] or Section 9.4.1 of [2].

Justin Dandasan dina 1 Geresetien	T	
Analytic Bandpass Signal Generation	Input: discrete	A prototype lowpass
$x_{\rm bp}(n)$ $h_{\rm cos}(k)$, real FIR filter	bandpass signal	filter (LPF) is designed to have a
$[\text{Real part of } h_{\text{BP}}(k)] \longrightarrow x_{l}(n)$	centered at f_c Hz, with sample	two-sided bandwidth
	· -	slightly greater
$h_{sin}(k)$, real FIR filter	rate of f_s Hz.	than the bandwidth
$[\text{Imag. part of } h_{\text{BP}}(k)] \longrightarrow X_{\text{Q}}(n)$		of $x_{bp}(n)$. The LPF's
	Output: discrete	coefficients are
$x_{ABP}(n) = x_{I}(n) + jx_{Q}(n)$	analytic $x_{ABP}(n)$	multiplied by cosine
	bandpass signal,	and sine sequences
Mindauina tha tua acta af filtan	centered at $f_{\rm c}$	whose frequencies
Windowing the two sets of filter coefficients will minimize passband	Hz, with sample	are f_{c} Hz, creating
magnitude differences between the $h_{cos}(k)$	rate of $f_{\rm s}$ Hz.	a positive-frequency
		complex $h_{\rm bp}(k)$
and $h_{sin}(k)$ filters. (This method has slightly improved aggregate (overall)		bandpass filter. If
negative frequency attenuation compared to		$f_{\rm c} = f_{\rm s}/4$ then half the LPF coefficients
the following $A(k)$ and $B(k)$ dual filter		will be zero-valued.
method.)		Using a half-band
		LPF, if possible,
		further enhances
		computational
		efficiency.
		See [6], Note 62 of
		[7], or Section 9.5
		of [2].
Analytic Bandpass Signal Generation	Input: discrete	Clay Turner's method
$x_{\rm bp}(n)$	bandpass signal	of designing two orthogonal real
$\Delta p(r) = p(r)$		
A(k)	centered at f_{c}	_
	Hz, with sample	bandpass filters,
$\begin{array}{c} \hline A(k) \\ \hline B(k) \\ \hline B(k$	_	_
$B(k) \longrightarrow X_{Q}(n)$	Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex
	Hz, with sample rate of $f_{ m s}$ Hz.	bandpass filters, that when combined yield a positive- frequency complex filter. If filters
$B(k) \longrightarrow X_Q(n)$	Hz, with sample rate of f_s Hz. Output: discrete	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$
$B(k) \longrightarrow X_{Q}(n)$	Hz, with sample rate of $f_{ m s}$ Hz.	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even
$B(k) \rightarrow x_{Q}(n)$ $x_{ABP}(n) = x_{I}(n) + jx_{Q}(n)$	Hz, with sample rate of f_{s} Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal,	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then
$B(k) \longrightarrow x_{Q}(n)$ $x_{ABP}(n) = x_{I}(n) + jx_{Q}(n)$ The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$ coefficients are a reversed-ordered	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and
The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$ coefficients are a reversed-ordered version of the $A[k]$ coefficients (reduces	Hz, with sample rate of $f_{\rm S}$ Hz. Output: discrete analytic $x_{\rm ABP}(n)$ bandpass signal, centered at $f_{\rm C}$	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients
The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$ coefficients are a reversed-ordered version of the $A[k]$ coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and
$B(k) \longrightarrow x_{Q}(n)$ $x_{ABP}(n) = x_{I}(n) + jx_{Q}(n)$ The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]$
$B(k) \longrightarrow x_Q(n)$ $x_{ABP}(n) = x_I(n) + jx_Q(n)$ The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$ coefficients are a reversed-ordered version of the $A[k]$ coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]filters are very$
$B(k) \longrightarrow x_Q(n)$ $x_{ABP}(n) = x_I(n) + jx_Q(n)$ The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$ coefficients are a reversed-ordered version of the $A[k]$ coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]filters are verynearly, but not$
$B(k) \longrightarrow x_Q(n)$ $x_{ABP}(n) = x_I(n) + jx_Q(n)$ The A(k) and B(k) filters have guaranteed equal magnitude responses. B[k] coefficients are a reversed-ordered version of the A[k] coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]filters are verynearly, but notquite exactly,$
$B(k) \longrightarrow x_Q(n)$ $x_{ABP}(n) = x_I(n) + jx_Q(n)$ The A(k) and B(k) filters have guaranteed equal magnitude responses. B[k] coefficients are a reversed-ordered version of the A[k] coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]filters are verynearly, but notquite exactly,linear.$
$B(k) \longrightarrow x_Q(n)$ $x_{ABP}(n) = x_I(n) + jx_Q(n)$ The A(k) and B(k) filters have guaranteed equal magnitude responses. B[k] coefficients are a reversed-ordered version of the A[k] coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]filters are verynearly, but notquite exactly,linear.See [8] for$
$B(k) \longrightarrow x_Q(n)$ $x_{ABP}(n) = x_I(n) + jx_Q(n)$ The $A(k)$ and $B(k)$ filters have guaranteed equal magnitude responses. $B[k]$ coefficients are a reversed-ordered version of the $A[k]$ coefficients (reduces	Hz, with sample rate of f_s Hz. Output: discrete analytic $x_{ABP}(n)$ bandpass signal, centered at f_c Hz, with sample	bandpass filters, that when combined yield a positive- frequency complex filter. If filters are centered at $f_s/4$ and have an even number of taps, then half the $A[k]$ and B[k] coefficients will be zero-valued. Phase responses of A[k] and $B[k]filters are verynearly, but notquite exactly,linear.$

Table 1 Cont'd:

For completeness, I mention that DSP pioneer Charles Rader proposed a computationally-efficient analytic bandpass signal generation method (See [10] or Note 66 in [7]) where both its $x_{I}(n)$ and $x_{Q}(n)$ output channels have identical frequency magnitude responses, however that scheme does not exhibit a linear-phase frequency response. As such, I didn't include it in Table 1.

References

[1] Considine, V. "Digital Complex Sampling," *Electronics Letters*, 19, August 4, 1983.

[2] Lyons, R. Understanding Digital Signal Processing, Prentice Hall Publishing, Hoboken, NJ, 2010.

[3] Ohlsson, H., et al. "Design of a Digital Down Converter Using High Speed Digital Filters,"

in Proc. Symp. on Gigahertz Electronics, Gothenburg, Sweden, March 13-14, 2000, pp. 309-312.

[4] Powell, S. "Design and Implementation Issues of All Digital Broadband Modems," DSP World Workshop Proceedings, Toronto, Canada, September 13-16, 1998, pp. 127-142. [5] Frerking, M. Digital Signal Processing in Communications Systems, Chapman & Hall, New

York, 1994, p. 330.

[6] Reilly, A., et. al. "Analytic Signal Generation-Tips and Traps," IEEE Trans. on Signal Proc.,

Vol. 42, No. 11, Nov. 1994.

[7] Rorabaugh, C. Notes on Digital Signal Processing: Practical Recipes for Design, Analysis and Implementation, Prentice Hall Publishing, Hoboken, NJ, 2010.

[8] Turner, C. "An Efficient Analytic Signal Generator", *IEEE Signal Processing Magazine*, *DSP Tips & Tricks column*, July 2009.

[9] Marple, S., Jr. "Computing the Discrete-Time 'Analytic' Signal via FFT," IEEE Trans. on

Signal Proc., Vol. 47, No. 9, September 1999, pp. 2600-2603.

[10] Rader, C. "A Simple Method for Sampling In-Phase and Quadrature Components," *IEEE Trans. Aerospace and Electronic Syst.*, Vol. 20, No. 6, pp. 821-824, Nov. 1984.