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There are so many different time- and frequency-domain methods for generating 
complex baseband and analytic bandpass signals that I had trouble keeping those 
techniques straight in my mind. Thus, for my own benefit, I created a kind of 
reference table showing those methods. I present that table for your viewing 
pleasure in this blog.  
 
For clarity, I define a complex baseband signal as follows: derived from an 
input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or 
discrete input xbp(n) bandpass signal whose spectrum is shown in Figure 1(b), a 
complex baseband signal is an xBB(n) sequence whose spectrum is that shown in 
Figure 1(c). The sample rate of an xbp(n) input sequence is defined as fs Hz.   
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Figure 1. 

 
Based on the same analog xbp(t) or discrete xbp(n) input bandpass signal, an 
analytic bandpass signal is an xABP(n) sequence whose spectrum is that shown in 
Figure 1(d). 
 
I realize that, by strict definition, an analytic signal has no negative-
frequency spectral energy. And because our xABP(n) output bandpass signal is a 
discrete sequence it has spectral replications in its negative-frequency 
spectral region—so calling xABP(n) an analytic signal seems incorrect. We'll 
bypass that controversy by saying that a discrete sequence is analytic if it has 
no spectral energy in the frequency range of –fs/2 to zero Hz.  
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Table 1, below, presents my Hit Parade of complex baseband and analytic bandpass 
signal generation methods. In that table "LPF" means a lowpass, linear-phase, 
tapped-delay line, FIR filter. All discrete Fourier transforms (DFTs) are 
implemented with radix-2 fast Fourier transforms (FFTs). 
 
Table 1: Complex baseband and analytic bandpass signal generation methods 
Process Input/Output Comments 

Quadrature Sampling 

xbp(t)

q(t)

i(t)

–sin(2πfct)

cos(2πfct)

A/DLPF

LPF A/D

xcos(t)

xsin(t)

xBB(n) = xI(n) + jxQ(n)

xI(n)

xQ(n)

fs

 
 

Input: analog 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz.. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs Hz. 

Uses analog mixing 
and analog lowpass 
filters. Difficult 
to control the exact 
phase delays and 
gains of the i(t) 
and q(t) signals.  

Quadrature Sampling 

 

LPF

LPF

xbp(t)

–sin(2πn/4)

cos(2πn/4)

xcos(n)

xsin(n)fs = 4fc =1/ts

xbp(n)
xI(n)

xQ(n)

A/D

xBB(n) = xI(n) + jxQ(n)
 

 

Input: analog 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs Hz. 

All-digital 
downconversion 
facilitates exact 
control of phases 
and gains of the 
xI(n) and xQ(n) 
signals. A/D's fs 
sample rate normally 
equal to 4fc, but 
setting fs = 0.8fc 
allows bandpass 
sampling to reduce 
the fs sample rate. 
fs must greater than 
twice the bandwidth 
of xbp(t). See [1] or 
Section 8.9 of [2]. 

Discrete Complex Downconversion 

2

2

2

2

Delay

Hilbert
filter

uI(n) vI(p) wI(p) xI(n')

uQ(n) vQ(p) wQ(p) xQ(n')

hhp(k)

hhp(k)
[hhilb(k)]

xbp(n)

xBB(n') = xI(n') + jxQ(n')
 

 

Input: discrete 
real bandpass 
signal centered 
at fs/4 Hz, with 
sample rate of fs
Hz. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs/4 Hz. 

Uses a time-domain 
Hilbert transformer 
and a half-band 
highpass FIR filter. 
If hhilb(k) has an 
odd number of taps, 
then half its 
coefficients will be 
zero-valued. See [3] 
or Section 13.43 of 
[2]. 
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Table 1 Cont'd: 

Discrete Complex Downconversion 

(a)

4

4

–

Compensation
filter [h(k)]

4

4

(b)

Hilbert filter

+

Hilbert
filter

Delay Delay

h(0) = –1/32
h(1) = 1/2 + 1/16

Compensation filter

h(0) h(1)

xbp(n)
xI(n')

xQ(n')

[hhilb(k)]

xbp(n)
z–1 z–1

z–1

z–1

z–1

xI(n')

xQ(n')

xBB(n') = xI(n') + jxQ(n')

 
 

Input: discrete 
real bandpass 
signal centered 
at fs/4 Hz, with 
sample rate of fs
Hz. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs/4 Hz. 

Uses a time-domain 
Hilbert transformer 
and simple three-tap 
highpass FIR 
compensation filter 
as shown in Part (a) 
of figure. Efficient 
implementation shown 
in Part (b) of 
figure. For 
reasonably 
acceptable 
operation, the 
bandwidth of xbp(n) 
must not be larger 
than, say, fs/10. 
See Section 13.43 of 
[2]. 

Discrete Complex Downconversion 

(b)

(a)

–sin(πn/4)

cos(πn/4)

xi(n)

xq(n)

LPF

LPF

2

2

xI(n')

xQ(n')

xbp(n)

xBB(n') = xI(n') + jxQ(n')

1, –1, 1, –1, ...

xi(n)

xq(n)

In-phase
LPF

Quadrature
LPF

xI(n')

xQ(n')

xbp(n)

z–1

 
 

 

Input: discrete 
real bandpass 
signal centered 
at fs/4 Hz, with 
sample rate of fs
Hz.. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs/2 Hz. 

Standard complex 
downconversion and 
lowpass FIR 
filtering, with 
decimation by two as 
shown in Part (a) of 
figure. Due to the 
decimation, a very 
efficient 
implementation is 
that shown in Part 
(b) of figure. The 
coefficients of the 
In-phase and 
Quadrature phase 
LPFs are decimated 
versions of the 
coefficients in the 
identical Part (a) 
LPFs. If the Part 
(a) LPFs are half-
band filters, the 
Part (b) In-phase 
and Quadrature phase 
LPFs will be even 
more computationally 
efficient. 

See [4], [5], or 
Section 13.1.3 of 
[2]. 
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Table 1 Cont'd: 

Discrete Complex Downconversion 

N-point
DFT

Set negative-
frequency
samples

equal to zero
2

N-point
inverse

DFT

Real

Imag.

Circular rotate
all samples in
negative-freq

direction

Assumes Xbp(m=0)
and Xbp(m=N/2)
are zero-valued

xbp(n) Xbp(m)

xI(n)

xQ(n)

XABP(m)

XBB(m)

xBB(n) = xI(n) + jxQ(n)
 

 

Input: discrete 
real bandpass 
signal centered 
at fc Hz, with 
sample rate of fs
Hz. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs Hz. 

Negative-frequency 
components of xbp(n) 
are attenuated in 
the frequency 
domain. Frequency 
downconversion 
performed by 
shifting (rotating) 
the frequency-domain 
indices of the 
positive-frequency 
spectral samples 
prior to inverse 
DFT.  

Discrete Complex Downconversion 

xI(n')

xQ(n')

Set negative-
frequency
samples

equal to zero

N-point
inverse

DFT

Real

Imag.

D

D

N-point
DFT

xbp(n)

2

XABP(m)

Assumes Xbp(m=0)
and Xbp(m=N/2)
are zero-valued

Xbp(m)

xBB(n') = xI(n') + jxQ(n')
 

 

Input: discrete 
real bandpass 
signal centered 
at kfs/D Hz, with 
sample rate of fs
Hz. 

 

Output: discrete 
complex xBB(n) 
baseband signal, 
centered at zero 
Hz, with sample 
rate of fs/D Hz. 

Negative-frequency 
components of xbp(n) 
are attenuated in 
the frequency 
domain. Frequency 
downconversion 
performed by 
decimation in the 
time domain. See 
Section 13.29 of 
[2].  

 

Analytic Bandpass Signal Generation 

N-tap FIR, hhilb(k),
Hilbert transformer

xbp(n)
xI(n)

xQ(n)

-sample delay
2

(N-1)

xABP(n) = xI(n) + jxQ(n)
 

 

Input: discrete 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz. 

 

Output: discrete 
analytic xABP(n) 
bandpass signal, 
centered at fc 
Hz, with sample 
rate of fs Hz. 

Standard time-
domain, tapped-delay 
line, FIR Hilbert 
transform method of 
discrete analytic 
bandpass signal 
generation. For 
proper time 
synchronization of 
xI(n) and xQ(n), N 
must be an odd 
number—in which case 
half the hhilb(k) 
coefficients will be 
zero-valued. 

See Note 61 of [7] 
or Section 9.4.1 of 
[2]. 
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Table 1 Cont'd: 

Analytic Bandpass Signal Generation 

xI(n)

xQ(n)

hcos(k), real FIR filter

hsin(k), real FIR filter

[Real part of hBP(k)]

[Imag. part of hBP(k)]

xABP(n) = xI(n) + jxQ(n)

xbp(n)

 
 

Windowing the two sets of filter 
coefficients will minimize passband 
magnitude differences between the hcos(k) 
and hsin(k) filters. (This method has 
slightly improved aggregate (overall) 
negative frequency attenuation compared to 
the following A(k) and B(k) dual filter 
method.)  

Input: discrete 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz. 

 

Output: discrete 
analytic xABP(n) 
bandpass signal, 
centered at fc 
Hz, with sample 
rate of fs Hz. 

A prototype lowpass 
filter (LPF) is 
designed to have a 
two-sided bandwidth 
slightly greater 
than the bandwidth 
of xbp(n). The LPF's 
coefficients are 
multiplied by cosine 
and sine sequences 
whose frequencies 
are fc Hz, creating 
a positive-frequency 
complex hbp(k) 
bandpass filter. If 
fc = fs/4 then half 
the LPF coefficients 
will be zero-valued. 
Using a half-band 
LPF, if possible, 
further enhances 
computational 
efficiency.  

See [6], Note 62 of 
[7], or Section 9.5 
of [2]. 

Analytic Bandpass Signal Generation 

B(k)

A(k) xI(n)

xQ(n)

xABP(n) = xI(n) + jxQ(n)

xbp(n)

 
 

The A(k) and B(k) filters have guaranteed 
equal magnitude responses. B[k] 
coefficients are a reversed-ordered 
version of the A[k] coefficients (reduces 
coefficient storage requirement). 

Input: discrete 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz. 

 

Output: discrete 
analytic xABP(n) 
bandpass signal, 
centered at fc 
Hz, with sample 
rate of fs Hz. 

Clay Turner's method 
of designing two 
orthogonal real 
bandpass filters, 
that when combined 
yield a positive-
frequency complex 
filter. If filters 
are centered at fs/4 
and have an even 
number of taps, then 
half the A[k] and 
B[k] coefficients 
will be zero-valued. 
Phase responses of 
A[k] and B[k] 
filters are very 
nearly, but not 
quite exactly, 
linear. 

See [8] for 
equations used to 
compute A(k) and 
B(k) coefficients. 
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Table 1 Cont'd: 

Analytic Bandpass Signal Generation 

Set negative-
frequency
samples

equal to zero

N-point
DFT

2

xI(n)

xQ(n)

N-point
inverse

DFT

Real

Imag.

XABP(m)
Assumes Xbp(m=0)

and Xbp(m=N/2)
are zero-valued

xbp(n) Xbp(m)

xABP(n) = xI(n) + jxQ(n)
 

 

Input: discrete 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz. 

 

Output: discrete 
analytic xABP(n) 
bandpass signal, 
centered at fc 
Hz, with sample 
rate of fs Hz. 

Straightforward 
frequency-domain 
method of bandpass 
analytic signal 
generation. Negative-
frequency spectral 
components of Xbp(m) 
are set to zero 
creating the desired 
analytic signal's 
spectrum.  

See [9] or Section 
9.4.2 of [2]. 

Interpolated Analytic Bandpass Signal 
Generation 

N-point
DFT

xbp(n) Create an XABP(m),
zero-valued,

MN-sample sequence
2

xABP(n') = xI(n') + jxQ(n')

xI(n')

xQ(n')

N-point
inverse

DFT

Real

Imag.

XABP(m)

XABP(m) = Xbp(m) for
1 < m < (N/2)–1

Assumes Xbp(m=0)
and Xbp(m=N/2)
are zero-valued

Xbp(m)

 

 

Input: discrete 
bandpass signal 
centered at fc 
Hz, with sample 
rate of fs Hz. 

 

Output: 
interpolated 
discrete xABP(n) 
analytic bandpass 
signal, centered 
at fc Hz, with 
sample rate of 
Mfs Hz. 

Frequency-domain 
method of 
interpolated by M 
bandpass analytic 
signal generation. 
Negative-frequency 
spectral components 
of Xbp(m) are set to 
zero creating the 
desired analytic 
signal's spectrum. 
New spectrum is zero-
stuffed, prior to 
inverse DFT, to 
achieve time-domain 
interpolation by 
factor M. 

See Section 13.28.2 
of [2]. 

 
For completeness, I mention that DSP pioneer Charles Rader proposed a 
computationally-efficient analytic bandpass signal generation method (See [10] 
or Note 66 in [7]) where both its xI(n) and xQ(n) output channels have identical 
frequency magnitude responses, however that scheme does not exhibit a linear-
phase frequency response. As such, I didn't include it in Table 1. 
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