## A Recipe for a Basic Trigonometry Table

IntroductionThis is an article that is give a better understanding to the Discrete Fourier Transform (DFT) by showing how to build a Sine and Cosine table from scratch. Along the way a recursive method is developed as a tone generator for a pure tone complex signal with an amplitude of one. Then a simpler multiplicative one. Each with drift correction factors. By setting the initial values to zero and one degrees and letting it run to build 45 values, the entire set of values needed...

## A New Contender in the Quadrature Oscillator Race

This blog advocates a relatively new and interesting quadrature oscillator proposed by Martin Vicanek [1]. That oscillator is shown in Figure 1.

The time domain equations describing the Figure 1 oscillator are

w(n) =...

## A New Related Site!

We are delighted to announce the launch of the very first new Related site in 15 years! The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.

We think MLRelated fits perfectly well within the “Related” family, with:

- the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
- the use of Machine/Deep Learning in Signal Processing applications, which is of...

## Filtering Noise: The Basics (Part 1)

IntroductionFinding signals in the presence of noise is one of the fundamental quests of the discipline of signal processing. Noise is inherently random by nature, so a probability oriented approach is needed to develop a mathematical framework for filtering (i.e. removing/suppressing) noise. This framework or discipline, formally referred to as stochastic signal processing, is often taught in graduate level engineering programs and is covered from different perspectives in excellent...

## Book Recommendation "What is Mathematics?"

What is Mathematics is a classic, lucidly written survey of mathematics by Courant and Robbins. The first edition was published in 1941! I have only read a portion of it, mainly the chapter on calculus. One page of Courant is worth about five pages of my old college calculus textbook, and it’s a lot more fun to read.

The reader of this book should already be familiar with algebra and trigonometry. For engineers, some worthwhile sections of the book are:

## Evaluate Noise Performance of Discrete-Time Differentiators

When it comes to noise, all differentiators are not created equal. Figure 1 shows the magnitude response of two differentiators. They both have a useful bandwidth of a little less than π/8 radians (based on maximum magnitude response error of 2%). Suppose we apply a signal with Gaussian noise to each of these differentiators. The sinusoidal signal with noise is shown in the top of Figure 2. Signal frequency is π/12.5 radians. The output of the so-called...

## Off-Topic: A Fluidic Model of the Universe

IntroductionThis article is a followup to my previous article "Off Topic: Refraction in a Varying Medium"[1]. Many of the concepts should be quite familiar and of interest to the readership of this site. In the "Speculations" section of my previous article, I mention the goal of finding a similar differential equation as (18) of [1] for light traveling in gravity. It turns out it is the right equation, but a wrong understanding. As a consequence of trying to solve this puzzle, a new...

## Learn About Transmission Lines Using a Discrete-Time Model

We don’t often think about signal transmission lines, but we use them every day. Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB). Like it or not, high-speed clock and signal traces on printed-circuit boards are also transmission lines.

While modeling transmission lines is in general a complex undertaking, it is surprisingly simple to model a lossless, uniform line with resistive terminations by using a discrete-time approach. A...

## Determination of the transfer function of passive networks with MATLAB Functions

With MATLAB functions, the transfer function of passive networks can be determined relatively easily. The method is explained using the example of a passive low-pass filter of the sixth order, which is shown in Fig.1

Fig.1 Passive low-pass filter of the sixth order

If one tried, as would be logical, to calculate the transfer function starting from the input, it would be quite complicated. On the other hand, if you start from the output, the determination of this function is simple...

## A DSP Quiz Question

Here's a DSP Quiz Question that I hope you find mildly interesting

BACKGROUND

Due to the periodic natures an N-point discrete Fourier transform (DFT) sequence and that sequence’s inverse DFT, it is occasionally reasonable to graphically plot either of those sequences as a 3-dimensional (3D) circular plot. For example, Figure 1(a) shows a length-32 x(n) sequence with its 3D circular plot given in Figure 1(b).

HERE'S THE QUIZ QUESTION:

I was reading a paper by an audio DSP engineer where the...## A New Related Site!

We are delighted to announce the launch of the very first new Related site in 15 years! The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.

We think MLRelated fits perfectly well within the “Related” family, with:

- the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
- the use of Machine/Deep Learning in Signal Processing applications, which is of...

## A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters

This blog discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.

Cascaded integrator-comb (CIC) digital filters are computationally-efficient implementations of narrowband lowpass filters, and are often embedded in hardware implementations of decimation, interpolation, and delta-sigma converter filtering.

After describing a few applications of CIC filters, this blog introduces their structure and behavior, presents the frequency-domain...

## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## A Fixed-Point Introduction by Example

IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...

## Understanding and Preventing Overflow (I Had Too Much to Add Last Night)

Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.

In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:

for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...## Feedback Controllers - Making Hardware with Firmware. Part 10. DSP/FPGAs Behaving Irrationally

This article will look at a design approach for feedback controllers featuring low-latency "irrational" characteristics to enable the creation of physical components such as transmission lines. Some thought will also be given as to the capabilities of the currently utilized Intel Cyclone V, the new Cyclone 10 GX and the upcoming Xilinx Versal floating-point FPGAs/ACAPs.

Fig 1. Making a Transmission Line, with the Circuit Emulator

Additional...

## Use Matlab Function pwelch to Find Power Spectral Density – or Do It Yourself

In my last post, we saw that finding the spectrum of a signal requires several steps beyond computing the discrete Fourier transform (DFT)[1]. These include windowing the signal, taking the magnitude-squared of the DFT, and computing the vector of frequencies. The Matlab function pwelch [2] performs all these steps, and it also has the option to use DFT averaging to compute the so-called Welch power spectral density estimate [3,4].

In this article, I’ll present some...

## Filtering Noise: The Basics (Part 1)

IntroductionFinding signals in the presence of noise is one of the fundamental quests of the discipline of signal processing. Noise is inherently random by nature, so a probability oriented approach is needed to develop a mathematical framework for filtering (i.e. removing/suppressing) noise. This framework or discipline, formally referred to as stochastic signal processing, is often taught in graduate level engineering programs and is covered from different perspectives in excellent...

## Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...## A Fixed-Point Introduction by Example

IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...

## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Understanding and Preventing Overflow (I Had Too Much to Add Last Night)

Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.

In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:

for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...## Adventures in Signal Processing with Python

Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...

## Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...

## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## An Interesting Fourier Transform - 1/f Noise

Power law functions are common in science and engineering. A surprising property is that the Fourier transform of a power law is also a power law. But this is only the start- there are many interesting features that soon become apparent. This may even be the key to solving an 80-year mystery in physics.

It starts with the following Fourier transform:

The general form is tα ↔ ω-(α+1), where α is a constant. For example, t2 ↔...

## Minimum Shift Keying (MSK) - A Tutorial

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## A New Related Site!

We are delighted to announce the launch of the very first new Related site in 15 years! The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.

We think MLRelated fits perfectly well within the “Related” family, with:

- the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
- the use of Machine/Deep Learning in Signal Processing applications, which is of...

## The 2021 DSP Online Conference

The 2021 DSP Online Conference is just around the corner and this year again, the program is packed with opportunities for DSP engineers to refresh their DSP skills and learn a few new tricks along the way.

By registering for the conference, not only will you have full access to all talks, workshops, and Q&A sessions at this year's event, but you'll also gain instant access to all talks from last year's...

## The DSP Online Conference - Right Around the Corner!

It is Sunday night as I write this blog post with a few days to go before the virtual doors of the very first DSP Online Conference open..

It all started with a post in the DSPRelated forum about three months ago. We had just had a blast running the 2020 Embedded Online Conference and we thought it could be fun to organize a smaller event dedicated to the DSP community. So my goal with the post in the forum was to see if...

## Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference

Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.

Chances are you also already know that you have until the end of the month of February to register for free.

And chances are that you are one of the more than 3000 pro-active engineers who have already registered.

But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...

## Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date

Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...

## Free Goodies from Embedded World - What to Do Next?

I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.

## Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes

When the idea of live-streaming parts of Embedded World came to me, I got so excited that I knew I had to make it happen. I perceived the opportunity as a win-win-win-win.

- win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event,
- win #2 - The organisation behind EW would benefit from the extra exposure
- win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
- win #4 - I would get...

## Spread the Word and Run a Chance to Win a Bundle of Goodies from Embedded World

Do you have a Twitter and/or Linkedin account?

If you do, please consider paying close attention for the next few days to the EmbeddedRelated Twitter account and to my personal Linkedin account (feel free to connect). This is where I will be posting lots of updates about how the EmbeddedRelated.tv live streaming experience is going at Embedded World.

The most successful this live broadcasting experience will be, the better the chances that I will be able to do it...

## Launch of EmbeddedRelated.tv

With the upcoming Embedded Word just around the corner, I am very excited to launch the EmbeddedRelated.tv platform.

This is where you will find the schedule for all the live broadcasts that I will be doing from Embedded World next week. Please note that the schedule will be evolving constantly, even during the show, so I suggest your refresh the page often. For instance, I am still unsure if I will be able to do the 'opening of the doors' broadcast as...

## Live Streaming from Embedded World!

For those of you who won't be attending Embedded World this year, I will try to be your eyes and ears by video streaming live from the show floor.

I am not talking improvised streaming from a phone, but real, high quality HD streaming with a high-end camera and a device that will bond three internet connections (one wifi and two cellular) to ensure a steady, and hopefully reliable, stream. All this to hopefully give those of you who cannot be there in person a virtual...