A Quadrature Signals Tutorial: Complex, But Not Complicated
Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...
A Fixed-Point Introduction by Example
IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...
Approximating the area of a chirp by fitting a polynomial
Once in a while we need to estimate the area of a dataset in which we are interested. This area could give us, for example, force (mass vs acceleration) or electric power (electric current vs charge).
GPS - some terminology!
Hi!
For my first post, I will share some information about GPS - Global Positioning System. I will delve one step deeper than a basic explanation of how a GPS system works and introduce some terminology.
GPS, like we all know is the system useful for identifying one's position, velocity, & time using signals from satellites (referred to as SV or space vehicle in literature). It uses the principle of trilateration (not triangulation which is misused frequently) for...
How the Cooley-Tukey FFT Algorithm Works | Part 3 - The Inner Butterfly
At the heart of the Cooley-Tukey FFT algorithm lies a butterfly, a simple yet powerful image that captures the recursive nature of how the FFT works. In this article we discover the butterfly’s role in transforming complex signals into their frequency components with efficiency and elegance. Starting with the 2-point DFT, we reveal how the FFT reuses repeated calculations to save time and resources. Using a divide-and-conquer approach, the algorithm breaks signals into smaller groups, processes them through interleaving butterfly diagrams, and reassembles the results step by step.
How the Cooley-Tukey FFT Algorithm Works | Part 2 - Divide & Conquer
The Fast Fourier Transform revolutionized the Discrete Fourier Transform by making it much more efficient. In part 1, we saw that if you run the DFT on a power-of-2 number of samples, the calculations of different groups of samples repeat themselves at different frequencies. By leveraging the repeating patterns of sine and cosine values, the algorithm enables us to calculate the full DFT more efficiently. However, the calculations of certain groups of samples repeat more often than others. In this article, we’re going to explore how the divide-and-conquer method prepares the ground for the next stage of the algorithm by grouping the samples into specially ordered pairs.