DSPRelated.com

An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 201610 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...

Should DSP Undergraduate Students Study z-Transform Regions of Convergence?

Rick Lyons September 14, 201613 comments

Not long ago I presented my 3-day DSP class to a group of engineers at Tektronix Inc. in Beaverton Oregon [1]. After I finished covering my material on IIR filters' z-plane pole locations and filter stability, one of the Tektronix engineers asked a question similar to:

     "I noticed that you didn't discuss z-plane regions of      convergence here. In my undergraduate DSP class we      spent a lot of classroom and homework time on the  ...


Implementing Impractical Digital Filters

Rick Lyons July 19, 20162 comments

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...


An Astounding Digital Filter Design Application

Rick Lyons July 7, 201613 comments

I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the "ASN Filter Designer." After experimenting with a demo version of this filter design software I was so impressed that I simply had publicize it to the subscribers here on dsprelated.com.

What I Liked About the ASN Filter Designer

With typical filter design software packages the user enters numerical values for the...


Digital PLL's -- Part 2

Neil Robertson June 15, 20165 comments

In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter.  Now let’s look at this PLL in the Z-domain [1, 2].  We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ. 

Having a Z-domain model of the DPLL will allow us to do three things:

Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...

The Swiss Army Knife of Digital Networks

Rick Lyons June 13, 201612 comments

This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications. 

Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...


Digital PLL's -- Part 1

Neil Robertson June 7, 201626 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...


Peak to Average Power Ratio and CCDF

Neil Robertson May 17, 20164 comments

Peak to Average Power Ratio (PAPR) is often used to characterize digitally modulated signals.  One example application is setting the level of the signal in a digital modulator.  Knowing PAPR allows setting the average power to a level that is just low enough to minimize clipping.

However, for a random signal, PAPR is a statistical quantity.  We have to ask, what is the probability of a given peak power?  Then we can decide where to set the average...


Filter a Rectangular Pulse with no Ringing

Neil Robertson May 12, 201610 comments

To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients:  they must all be positive.  However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical.  What we are describing is basically a window function.

Consider a rectangular pulse 32 samples long with fs = 1 kHz.  Here is the Matlab code to generate the pulse:

N= 64; fs= 1000; % Hz sample...

Data Types for Control & DSP

Tim Wescott April 26, 20166 comments

There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.

I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code.  Numerically, this should work for most control problems, but it can be an extravagant use of processor resources.  There ought to be a better way to determine what precision you need...


A Simpler Goertzel Algorithm

Rick Lyons February 4, 2021

In this blog I propose a Goertzel algorithm that is simpler than the version of the Goertzel algorithm that is traditionally presented DSP textbooks. Below I very briefly describe the DSP textbook version of the Goertzel algorithm followed by a description of my proposed simpler algorithm.

The Traditional DSP Textbook Goertzel Algorithm

The so-called Goertzel algorithm is used to efficiently compute a single mth-bin sample of an N-point discrete Fourier transform (DFT) [1-4]. The...


A Fast Guaranteed-Stable Sliding DFT Algorithm

Rick Lyons June 15, 202342 comments

This blog presents a most computationally-efficient guaranteed-stable real-time sliding discrete Fourier transform (SDFT) algorithm. The phrase “real-time” means the network computes one spectral output sample, equal to a single-bin output of an N‑point discrete Fourier transform (DFT), for each input signal sample.

Proposed Guaranteed Stable SDFT

My proposed guaranteed stable SDFT, whose development is given in [1], is shown in Figure 1(a). The output sequence Xk(n) is an N-point...


Who else is going to Sensors Expo in San Jose? Looking for roommate(s)!

Stephane Boucher May 29, 20186 comments

This will be my first time attending this show and I must say that I am excited. I am bringing with me my cameras and other video equipment with the intention to capture as much footage as possible and produce a (hopefully) fun to watch 'highlights' video. I will also try to film as many demos as possible and share them with you.

I enjoy going to shows like this one as it gives me the opportunity to get out of my home-office (from where I manage and run the *Related sites) and actually...


Harmonic Notch Filter

Mike March 28, 201615 comments

My basement is covered with power lines and florescent lights which makes collecting ECG and EEG data  rather difficult due to the 60 cycle hum.  I found the following notch filter to work very well at eliminating the background signal without effecting the highly amplified signals I was looking for. 

The notch filter is based on the a transfer function with the form $$H(z)=\frac{1}{2}(1+A(z))$$ where A(z) is an all pass filter. The original paper [1] describes a method to...


Complex Down-Conversion Amplitude Loss

Rick Lyons March 3, 20157 comments

This blog illustrates the signal amplitude loss inherent in a traditional complex down-conversion system. (In the literature of signal processing, complex down-conversion is also called "quadrature demodulation.")

The general idea behind complex down-conversion is shown in Figure 1(a). And the traditional hardware block diagram of a complex down-converter is shown in Figure 1(b).

Let's assume the input to our down-conversion system is an analog radio frequency (RF) signal,...


Premium Forum?

Stephane Boucher May 25, 201514 comments

Chances are that by now, you have had a chance to browse the new design of the *related site that I published several weeks ago.  I have been working for several months on this and I must admit that I am very happy with the results.  This new design will serve as a base for many new exciting developments. I would love to hear your comments/suggestions if you have any, please use the comments system at the bottom of this page.

First on my list would be to build and launch a new forum...


Somewhat Off Topic: Deciphering Transistor Terminology

Rick Lyons May 28, 20194 comments

I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type semiconductor.

The terminology of "emitter" and "collector" seems appropriate, but did you ever wonder why the semiconductor block in the center is called the "base"? The word base seems inappropriate because the definition of the word base is:...


Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators

Steve Maslen January 5, 20187 comments
This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality. 

Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An Intel numerically controlled oscillator


Modeling a Continuous-Time System with Matlab

Neil Robertson June 6, 20172 comments

Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω).  However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s).  An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2].  This method provides an exact match to the continuous-time...


Live Streaming from Embedded World!

Stephane Boucher February 12, 2019

For those of you who won't be attending Embedded World this year, I will try to be your eyes and ears by video streaming live from the show floor.   

I am not talking improvised streaming from a phone, but real, high quality HD streaming with a high-end camera and a device that will bond three internet connections (one wifi and two cellular) to ensure a steady, and hopefully reliable, stream. All this to hopefully give those of you who cannot be there in person a virtual...