"Neat" Rectangular to Polar Conversion Algorithm

Rick Lyons November 15, 20105 comments

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:


Improved Narrowband Lowpass IIR Filters

Rick Lyons November 6, 20101 comment

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...


Least-squares magic bullets? The Moore-Penrose Pseudoinverse

Markus Nentwig October 24, 20109 comments

Hello,

the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.

I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...


Computing FFT Twiddle Factors

Rick Lyons August 8, 201017 comments

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...


Hidden Linear Algebra in DSP

Sami Aldalahmeh June 18, 20104 comments

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...


Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm

Rick Lyons February 9, 20103 comments

Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.

After some thinking, I believe I have a solution to this problem. Here is my idea:

Let's say our original input data is the complex-valued sequence...


Unit Testing for Embedded Algorithms

Anthony Ricke December 21, 2009

Happy Holidays! For my premier article, I am writing about my favorite technique to use when designing and developing software- unit testing. Unit testing is a best practice when designing software. It allows the designer to verify the behavior of the software units before the entire system is complete, and it facilitates the change and growth of the software system because the developer can verify that the changes will not affect the behavior of other parts of the system. I have used...


Using Mason's Rule to Analyze DSP Networks

Rick Lyons August 31, 20096 comments

There have been times when I wanted to determine the z-domain transfer function of some discrete network, but my algebra skills failed me. Some time ago I learned Mason's Rule, which helped me solve my problems. If you're willing to learn the steps in using Mason's Rule, it has the power of George Foreman's right hand in solving network analysis problems.

This blog discusses a valuable analysis method (well known to our analog control system engineering brethren) to obtain the z-domain...


The Nature of Circles

Peter Kootsookos February 21, 20093 comments
What do you mean?

When calculating the mean of a list of numbers, the obvious approach is to sum them and divide by how many there are.

Suppose I give you a list of two numbers:

  • 0
  • 359

What is their mean? The obvious answer is 179.5.

If I told you that the numbers were compass bearings in degrees, what would your answer be then? Does 179.5 seem correct?

In the case of compass bearings, 0 is the same direction as 360. When talking about angles in the DSP world, we often talk about...


Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT

Rick Lyons January 13, 20095 comments

Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.

Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...


Specifying the Maximum Amplifier Noise When Driving an ADC

Rick Lyons June 9, 20145 comments

I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].

The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...


"Neat" Rectangular to Polar Conversion Algorithm

Rick Lyons November 15, 20105 comments

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:


Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals

Rick Lyons October 31, 20131 comment

In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...


Multiplierless Exponential Averaging

Rick Lyons December 5, 20082 comments

This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate relatively constant-amplitude signal measurements.

Figure 1 Exponential averaging: (a) standard network; (b) single-multiply network.

That exponential averager's difference equation is

y(n) = αx(n) + (1 –...

Instant CIC

Markus Nentwig May 8, 20124 comments

Summary:

A floating point model for a CIC decimator, including the frequency response.

Description:

A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.

One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...


A Complex Variable Detective Story – A Disconnect Between Theory and Implementation

Rick Lyons October 14, 2014

Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.

A Surprising Algebra Puzzle

I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...


Correlation without pre-whitening is often misleading

Peter Kootsookos February 19, 20089 comments
White Lies

Correlation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.

A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...


Harmonic Notch Filter

Mike March 28, 201614 comments

My basement is covered with power lines and florescent lights which makes collecting ECG and EEG data  rather difficult due to the 60 cycle hum.  I found the following notch filter to work very well at eliminating the background signal without effecting the highly amplified signals I was looking for. 

The notch filter is based on the a transfer function with the form $$H(z)=\frac{1}{2}(1+A(z))$$ where A(z) is an all pass filter. The original paper [1] describes a method to...


Hidden Linear Algebra in DSP

Sami Aldalahmeh June 18, 20104 comments

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...


Impulse Response Approximation

Christopher Felton August 6, 20113 comments

Recently, I stumbled upon a stepped-triangular (ST) approximation that can be implemented as a cascade of recursive running sum (RRS) filters.  The following is a short introduction to the stepped-triangular approximation.The stepped-triangular approximation was introduced by Jovanovic-Dolecek and Mitra [1] as a quantized approximation of a low-pass filter (LPF).  Figure 1 shows an example of the approximation.

 

[Figure 1: Stepped Approximation of a LPF...