DSPRelated.com

There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Neil Robertson October 23, 20179 comments
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane.  I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way.  I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix. 

This post is available in PDF format for easy...


Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects

Steve Maslen September 9, 2017
Some Design and Simulation Considerations for Sampled-Data Controllers

This article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.


Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Steve Maslen August 24, 2017
Developing and Validating Simulation Models

This article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.


Feedback Controllers - Making Hardware with Firmware. Part I. Introduction

Steve Maslen August 22, 2017
Introduction to the topic 

This is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.

  • Part 1: 

Modeling a Continuous-Time System with Matlab

Neil Robertson June 6, 20172 comments

Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω).  However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s).  An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2].  This method provides an exact match to the continuous-time...


Multi-Decimation Stage Filtering for Sigma Delta ADCs: Design and Optimization

AHMED SHAHEIN March 1, 20176 comments

During my research on digital FIR decimation filters I have been developing various Matlab scripts and functions. In which I have decided later on to consolidate it in a form of a toolbox. I have developed this toolbox to assist and automate the process of designing the multi-stage decimation filter(s). The toolbox is published as an open-source at the MathWorks web-site. My dissertation is open for public online as well. The toolbox has a wide set of examples to guide the user...


Canonic Signed Digit (CSD) Representation of Integers

Neil Robertson February 18, 2017

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients.  I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values.  Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}.  Thus, for example, the binary value 1 1...


Matlab Code to Synthesize Multiplierless FIR Filters

Neil Robertson October 31, 20163 comments

This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters.

A filter coefficient can be represented as a sum of powers of 2.  For example, if a coefficient = decimal 5 multiplies input x, the output is $y= 2^2*x + 2^0*x$.  The factor of $2^2$ is then implemented with a shift of 2 bits.  This method is not efficient for coefficients having a lot of 1’s, e.g. decimal 31 = 11111.  To reduce the number of non-zero...


The Power Spectrum

Neil Robertson October 8, 2016

Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis.  However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain.  This post shows how to calculate an accurate power spectrum.

Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...


Digital PLL's -- Part 2

Neil Robertson June 15, 20165 comments

In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter.  Now let’s look at this PLL in the Z-domain [1, 2].  We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ. 

Having a Z-domain model of the DPLL will allow us to do three things:

Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...

Python number crunching faster? Part I

Christopher Felton September 17, 20114 comments

Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc.  I have been using Python and the common numerical and scientific packages available.  Personally, I have found this to be very useful in my work.  Lately there has been some chatter on speeding up Python.

From another project I follow, MyHDL, I was introduced to the Python JIT compiler,


Modelling a Noisy Communication Signal in MATLAB for the Analog to Digital Conversion Process

Parth Vakil October 30, 200713 comments

A critical thing to realize while modeling the signal that is going to be digitally processed is the SNR. In a receiver, the noise floor (hence the noise variance and hence its power) are determined by the temperature and the Bandwidth. For a system with a constant bandwidth, relatively constant temperature, the noise power remains relatively constant as well. This implies that the noise variance is a constant.

In MATLAB, the easiest way to create a noisy signal is by using...


Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Steve Maslen August 24, 2017
Developing and Validating Simulation Models

This article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.


Third-Order Distortion of a Digitally-Modulated Signal

Neil Robertson June 9, 2020
Analog designers are always harping about amplifier third-order distortion.  Why?  In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.

In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude.  With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:

$$y=...


Modeling Anti-Alias Filters

Neil Robertson September 26, 2021

Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a.  In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal.  We’ll also model aliasing of Gaussian noise.  I hope the examples make the textbook explanations of aliasing seem a little more real.  Of course, modeling of...


Coefficients of Cascaded Discrete-Time Systems

Neil Robertson March 4, 2018

In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems.  With the coefficients in hand, it’s then easy to compute the time or frequency response.  The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].

This article is available in PDF format for...


Setting Carrier to Noise Ratio in Simulations

Neil Robertson April 11, 2021

When simulating digital receivers, we often want to check performance with added Gaussian noise.  In this article, I’ll derive the simple equations for the rms noise level needed to produce a desired carrier to noise ratio (CNR or C/N).  I also provide a short Matlab function to generate a noise vector of the desired level for a given signal vector.

Definition of C/N

The Carrier to noise ratio is defined as the ratio of average signal power to noise power for a modulated...


Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects

Steve Maslen September 9, 2017
Some Design and Simulation Considerations for Sampled-Data Controllers

This article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.


Radio Frequency Distortion Part II: A power spectrum model

Markus Nentwig October 11, 20101 comment
Summary

This article presents a ready-to-use model for nonlinear distortion caused by radio frequenfcy components in wireless receivers and linear transmitters. Compared to the similar model presented in my earlier blog entry, it operates on expectation values of the the power spectrum instead of the signal itself: Use the signal-based model to generate distortion on a signal, and the one from this article to directly obtain the power spectrum much more efficiently.In...


Correlation without pre-whitening is often misleading

Peter Kootsookos February 18, 20089 comments
White Lies

Correlation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.

A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...