Paraunitary Filter Examples
The Haar filter bank is defined as
![$\displaystyle \mathbf{H}(z) = \frac{1}{\sqrt{2}}\left[\begin{array}{c} 1+z^{-1} \\ [2pt] 1-z^{-1} \end{array}\right]
$](http://www.dsprelated.com/josimages_new/filters/img1655.png)

![$\displaystyle {\tilde{\mathbf{H}}}(z) = \left[\begin{array}{cc} 1+z & 1 - z \end{array}\right] / \sqrt{2}
$](http://www.dsprelated.com/josimages_new/filters/img1656.png)
![$\displaystyle {\tilde{\mathbf{H}}}(z) \mathbf{H}(z) = \left[\begin{array}{cc} 1...
...ight] \left[\begin{array}{c} 1+z^{-1} \\ [2pt] 1-z^{-1} \end{array}\right]
= 1
$](http://www.dsprelated.com/josimages_new/filters/img1657.png)


For more about paraunitary filter banks, see Chapter 6 of [98].
Next Section:
Linearity
Previous Section:
Paraunitary MIMO Filters
The Haar filter bank is defined as
For more about paraunitary filter banks, see Chapter 6 of [98].