Free Books

Shift Theorem

The shift theorem says that a delay of $ \Delta$ samples in the time domain corresponds to a multiplication by $ z^{-\Delta}$ in the frequency domain:

$\displaystyle {\cal Z}_z\{$SHIFT$\displaystyle _\Delta\{x\}\} \;=\; z^{-\Delta} X(z), \; \Delta\ge 0,
$

or, using more common notation,

$\displaystyle \zbox {x(n-\Delta) \;\leftrightarrow\; z^{-\Delta} X(z), \; \Delta\ge 0.}
$

Thus, $ x(\cdot - \Delta)$, which is the waveform $ x(\cdot)$ delayed by $ \Delta$ samples, has the z transform $ z^{-\Delta}X(z)$.


Proof:

\begin{eqnarray*}
{\cal Z}_z\{\mbox{{\sc Shift}}_\Delta\{x\}\} &\isdef & \sum_{n...
...ty}x(m) z^{-m} \\
&\isdef & z^{-\Delta} X(z), % \quad\pfendmath
\end{eqnarray*}

where we used the causality assumption $ x(m)=0$ for $ m<0$.


Next Section:
Convolution Theorem
Previous Section:
Complete Response