Free Books

Triangle Difference Inequality

A useful variation on the triangle inequality is that the length of any side of a triangle is greater than the absolute difference of the lengths of the other two sides:


$\displaystyle \zbox {\Vert\underline{u}-\underline{v}\Vert \geq \left\vert\Vert\underline{u}\Vert - \Vert\underline{v}\Vert\right\vert}
$


Proof: By the triangle inequality,
\begin{eqnarray*}
\Vert\underline{v}+ (\underline{u}-\underline{v})\Vert &\leq &...
...}\Vert &\geq& \Vert\underline{u}\Vert - \Vert\underline{v}\Vert.
\end{eqnarray*}
Interchanging $ \underline{u}$ and $ \underline{v}$ establishes the absolute value on the right-hand side.
Next Section:
Vector Cosine
Previous Section:
Triangle Inequality