#### Desired Impulse Response

It is good to check that the desired impulse response is not overly aliased in the time domain. The impulse-response for this example is plotted in Fig.8.5. We see that it appears quite short compared with the inverse FFT used to compute it. The script in Fig.8.6 gives the details of this computation, and also prints out a measure of ``time-limitedness'' defined as the norm of the outermost 20% of the impulse response divided by its total norm--this measure was reported to be % for this example.*noncausal*. In fact, it is zero phase [449]. This is of course expected because the desired frequency response was real (and nonnegative).

Ns = length(Gdbfk); if Ns~=Nfft/2+1, error("confusion"); end Sdb = [Gdbfk,Gdbfk(Ns-1:-1:2)]; % install negative-frequencies S = 10 .^ (Sdb/20); % convert to linear magnitude s = ifft(S); % desired impulse response s = real(s); % any imaginary part is quantization noise tlerr = 100*norm(s(round(0.9*Ns:1.1*Ns)))/norm(s); disp(sprintf(['Time-limitedness check: Outer 20%% of impulse ' ... 'response is %0.2f %% of total rms'],tlerr)); % = 0.02 percent if tlerr>1.0 % arbitrarily set 1% as the upper limit allowed error('Increase Nfft and/or smooth Sdb'); end figure(2); plot(s,'-k'); grid('on'); title('Impulse Response'); xlabel('Time (samples)'); ylabel('Amplitude'); |

**Next Section:**

Converting the Desired Amplitude Response to Minimum Phase

**Previous Section:**

Measured Amplitude Response