Energy Density Waves
The vibrational energy per unit length along the string, or wave energy density [317] is given by the sum of potential and kinetic energy densities:
(C.50) |
Sampling across time and space, and substituting traveling wave components, one can show in a few lines of algebra that the sampled wave energy density is given by
(C.51) |
where
Thus, traveling power waves (energy per unit time) can be converted to energy density waves (energy per unit length) by simply dividing by , the speed of propagation. Quite naturally, the total wave energy in the string is given by the integral along the string of the energy density:
(C.52) |
In practice, of course, the string length is finite, and the limits of integration are from the coordinate of the left endpoint to that of the right endpoint, e.g., 0 to .
Next Section:
Root-Power Waves
Previous Section:
Power Waves