Example with Coupled Rotations

Now let the mass $ m$ be located at $ \underline{x}=[1,1,0]^T$ so that

\begin{eqnarray*}
\mathbf{I}&=& m \left(\left\Vert\,\underline{x}\,\right\Vert^2...
... & 0\\ [2pt]
-1 & 1 & 0\\ [2pt]
0 & 0 & 2
\end{array}\right].
\end{eqnarray*}

We expect $ \underline{\omega}=[1,1,0]$ to yield zero for the moment of inertia, and sure enough $ \underline{\tilde{\omega}}^T\mathbf{I}\,\underline{\tilde{\omega}}=0$. Similarly, the vector angular momentum is zero, since $ \mathbf{I}\,\underline{\omega}=\underline{0}$.

For $ \underline{\omega}=[1,0,0]^T$, the result is

\begin{displaymath}
\mathbf{I}\eqsp
\begin{array}{r}\left[\begin{array}{ccc} 1 ...
...egin{array}{c} 1 \\ [2pt] 0 \\ [2pt] 0\end{array}\right]m = m,
\end{displaymath}

which makes sense because the distance from the axis $ \underline{e}_1$ to $ \underline{x}$ is one. The same result is obtained for rotation about $ \underline{\omega}=\underline{e}_2$. For $ \underline{\omega}=\underline{e}_3$, however, the result is $ I=2m = m \vert\vert\,\underline{x}\,\vert\vert ^2$, as expect.


Next Section:
Off-Diagonal Terms in Moment of Inertia Tensor
Previous Section:
Simple Example