## Moving Rigid Termination

It is instructive to study the ``waveguide equivalent circuit'' of the simple case of a rigidly terminated ideal string with its left endpoint being moved by an external force, as shown in Fig.6.4. This case is relevant to bowed strings (§9.6) since, during time intervals in which the bow and string are stuck together, the bow provides a termination that divides the string into two largely isolated segments. The bow can therefore be regarded as a moving termination during ``sticking''.Referring to Fig.6.4, the left termination of the rigidly terminated ideal string is set in motion at time with a constant velocity . From Eq.(6.5), the wave impedance of the ideal string is , where is tension and is mass density. Therefore, the upward force applied by the moving termination is initially . At time , the traveling disturbance reaches a distance from along the string. Note that the string slope at the moving termination is given by , which derives the fact that force waves are minus tension times slope waves. (See §C.7.2 for a fuller discussion.)

### Digital Waveguide Equivalent Circuits

### Animation of Moving String Termination and Digital Waveguide Models

In the force wave simulation of Fig.6.5b,^{7.4}the termination motion appears as an additive injection of a constant force at the far left. At time 0, this initiates a force step from 0 to traveling to the right. Since force waves are negated slope waves multiplied by tension,

*i.e.*, , the slope of the string behind the traveling force step is . When the traveling step-wave reaches the right termination, it reflects with

*no*sign inversion, thus sending back a doubling-wave to the left which elevates the string force from to . Behind this wave, the slope is then . This answers the question of the previous paragraph: The string is in fact piecewise linear during the first return reflection, consisting of two line segments with slope on the left, and twice that on the right. When the return step-wave reaches the left termination, it is reflected again and added to the externally injected dc force signal, sending an amplitude positive step-wave to the right (overwriting the amplitude signal in the upper rail). This can be added to the amplitude samples in the lower rail to produce a net traveling force step in the string of amplitude traveling to the right. The slope of the string behind this wave is , and the slope in front of this wave is still . The force applied to the string by the termination has risen to in order to keep the velocity steady at . (We may interpret the input as the

*additional*force needed each period to keep the termination moving at speed --see the next paragraph below.) This process repeats forever, resulting in traveling wave components which grow without bound, and whose sum (which is proportional to minus the physical string slope) also grows without bound.

^{7.5}The string is always piecewise linear, consisting of at most two linear segments having negative slopes which differ by . A sequence of string displacement snapshots is shown in Fig.6.6.

### Terminated String Impedance

Note that the impedance of the*terminated*string, seen from one of its endpoints, is not the same thing as the wave impedance of the string itself. If the string is infinitely long, they are the same. However, when there are

*reflections*, they must be included in the impedance calculation, giving it an imaginary part. We may say that the impedance has a ``reactive'' component. The driving-point impedance of a rigidly terminated string is ``purely reactive,'' and may be called a

*reactance*(§7.1). If denotes the force at the driving-point of the string and denotes its velocity, then the driving-point impedance is given by (§7.1)

**Next Section:**

The Ideal Plucked String

**Previous Section:**

Rigid Terminations