Reply by Jerry Avins January 5, 20072007-01-05
Ron N. wrote:
> Jerry Avins wrote:
...
>> Why are you busting my chops? > > Not you in particular, just the idea in general that sampling and > bandlimiting are related by *necessity*. They aren't. It's just > that samples are usually worthless (or worth less) unless one > does some sort of suitable low pass (or bandpass) filtering, > which a beginner, perhaps such as the OP, doesn't know about > or has forgotten.
Actually, my point was different. Without prior bandpass filtering, aliasing corrupts the signal; agreed. My point was that after sampling, there is only this signal (and its images) within the band allowed by the sample rate. For a baseband signal, only components up to Fs/2 exist in the samples. These are replicated with or without inversion on up the spectrum. Whichever image of an aliased signal one chooses, it has all of the aliases that the baseband image has. The act of sampling converts out-of-band components to in-band aliases. After sampling, there are no out-of-band components; they've been converted to in-band components. I call that bandlimiting. If you have a better term, I'd like to adopt it. Jerry -- Engineering is the art of making what you want from things you can get. �����������������������������������������������������������������������
Reply by Ron N. January 5, 20072007-01-05
Jerry Avins wrote:
> Ron N. wrote: > > Jerry Avins wrote: > >> Ron N. wrote: > >>> Jerry Avins wrote: > >>>> The spectra are easy to compute *for continuous waveforms*. They are > >>>> tabulated in many books. You cannot deal with continuous waveforms using > >>>> a computer, and if you sample the waveform you bandlimit it *whether you > >>>> intend to or not*. > >>> Sampling does not automatically bandlimit. You can undersample > >>> for some demodulation schemes, for instance. The sampler does > >>> not know which band you want. You have to pick a band filter > >>> (low pass, or band pass for your selected frequency range). > >> Sampling aliases all the frequencies above Fs/2 to other frequencies > >> below Fs/2. Any proper reconstruction procedure will generate a > >> continuous waveform from those samples all of whose components are below > >> Fs/2. I call that bandlimiting. What do you call it? > > > > Improper reconstruction. If your signal is above Fs/2 (but narrow- > > band enough not to be aliased with itself) then you should use a > > reconstruction formula for that higher frequency band. > > > > The reconstruction below Fs/2 is only valid if you have out-of-band > > information telling you that that is where your signal belongs. > > Otherwise any reconstruction is ambiguous. > > Do you really think the OP was into subband sampling? It was clearly a > question about baseband and I think you know that too.
Neither. I wouldn't be surprised if the OP was dealing with a non-bandlimited signal (which means a baseband reconstruction will be incorrect, or inexact). Sampling doesn't fix that.
> Why are you busting my chops?
Not you in particular, just the idea in general that sampling and bandlimiting are related by *necessity*. They aren't. It's just that samples are usually worthless (or worth less) unless one does some sort of suitable low pass (or bandpass) filtering, which a beginner, perhaps such as the OP, doesn't know about or has forgotten. IMHO. YMMV. -- rhn A.T nicholson d.0.t C-o-M
Reply by Jerry Avins January 5, 20072007-01-05
Ron N. wrote:
> Jerry Avins wrote: >> Ron N. wrote: >>> Jerry Avins wrote: >>>> The spectra are easy to compute *for continuous waveforms*. They are >>>> tabulated in many books. You cannot deal with continuous waveforms using >>>> a computer, and if you sample the waveform you bandlimit it *whether you >>>> intend to or not*. >>> Sampling does not automatically bandlimit. You can undersample >>> for some demodulation schemes, for instance. The sampler does >>> not know which band you want. You have to pick a band filter >>> (low pass, or band pass for your selected frequency range). >> Sampling aliases all the frequencies above Fs/2 to other frequencies >> below Fs/2. Any proper reconstruction procedure will generate a >> continuous waveform from those samples all of whose components are below >> Fs/2. I call that bandlimiting. What do you call it? > > Improper reconstruction. If your signal is above Fs/2 (but narrow- > band enough not to be aliased with itself) then you should use a > reconstruction formula for that higher frequency band. > > The reconstruction below Fs/2 is only valid if you have out-of-band > information telling you that that is where your signal belongs. > Otherwise any reconstruction is ambiguous.
Do you really think the OP was into subband sampling? It was clearly a question about baseband and I think you know that too. Why are you busting my chops? Jerry -- Engineering is the art of making what you want from things you can get. �����������������������������������������������������������������������
Reply by Ron N. January 5, 20072007-01-05
Jerry Avins wrote:
> Ron N. wrote: > > Jerry Avins wrote: > >> The spectra are easy to compute *for continuous waveforms*. They are > >> tabulated in many books. You cannot deal with continuous waveforms using > >> a computer, and if you sample the waveform you bandlimit it *whether you > >> intend to or not*. > > > > Sampling does not automatically bandlimit. You can undersample > > for some demodulation schemes, for instance. The sampler does > > not know which band you want. You have to pick a band filter > > (low pass, or band pass for your selected frequency range). > > Sampling aliases all the frequencies above Fs/2 to other frequencies > below Fs/2. Any proper reconstruction procedure will generate a > continuous waveform from those samples all of whose components are below > Fs/2. I call that bandlimiting. What do you call it?
Improper reconstruction. If your signal is above Fs/2 (but narrow- band enough not to be aliased with itself) then you should use a reconstruction formula for that higher frequency band. The reconstruction below Fs/2 is only valid if you have out-of-band information telling you that that is where your signal belongs. Otherwise any reconstruction is ambiguous. IMHO. YMMV. -- rhn A.T nicholson d.0.t C-o-M
Reply by robert bristow-johnson January 4, 20072007-01-04
Ron N. wrote:
> Jerry Avins wrote: > > > No frequencies above half the sample rate exist in a > > set of samples. > > Of course they exist. It's just that if they are there *and* the > baseband spectrum is also there, then they are aliased together > and you can't tell them apart (without some other external > information).
dunno if i agree with this. we have to be specific about what we mean. by set of samples, i mean { x[n]: n integer, -inf < n < +inf } in this set there is no concept of inbetween integer n. x[r] is not defined unless r is an integer. this can be represented with a fourier transform (the DTFT) which is the Z transform of x[n] X(z) = SUM x[n] z^(-n) n with z = e^(jw) for real w . this X(e^(jw)) is periodic with period 2*pi. normally we deal with -pi < w < +pi. the repeated *images* are not *aliases*. they are images and simply from X(z) or from x[n] we don't know whether or not there was aliasing. strictly speaking, that information is gone and lacking any outside info, i think you normally have to assume that a frequency component that exists was originally between -pi and +pi. that's why they're called "aliases", they were originally outside that range and masquarade as if they were always between -pi and +pi. in this sense, Jerry is right, i think. and if you make the hard-core assumption that x[n] is strictly associated with the bandlimited reconstruction: x(t) = SUM x[n] sinc(t-n) n then there are explicitly no (radian) frequencies above pi in magnitude. if you instead say x(t) = SUM x[n] delta(t-n) n there are images, but no aliases (unless you have outside information that tells you something about x(t) before it was sampled). r b-j
Reply by Jerry Avins January 4, 20072007-01-04
Ron N. wrote:
> Jerry Avins wrote: >> The spectra are easy to compute *for continuous waveforms*. They are >> tabulated in many books. You cannot deal with continuous waveforms using >> a computer, > > You forget about symbolic math programs, which can deal with some > continuous waveforms if they are functions of a form that the symbolic > programs can handle (symbolic integration, convolution, etc.) > A computer can also use the book tabulations.
I didn't forget. If I have to touch all bases and enumerate all possible exceptions in every discussion, I won't be able to discuss much. Jerry -- Engineering is the art of making what you want from things you can get. &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;
Reply by Jerry Avins January 4, 20072007-01-04
Ron N. wrote:
> Jerry Avins wrote: >> The spectra are easy to compute *for continuous waveforms*. They are >> tabulated in many books. You cannot deal with continuous waveforms using >> a computer, and if you sample the waveform you bandlimit it *whether you >> intend to or not*. > > Sampling does not automatically bandlimit. You can undersample > for some demodulation schemes, for instance. The sampler does > not know which band you want. You have to pick a band filter > (low pass, or band pass for your selected frequency range).
Sampling aliases all the frequencies above Fs/2 to other frequencies below Fs/2. Any proper reconstruction procedure will generate a continuous waveform from those samples all of whose components are below Fs/2. I call that bandlimiting. What do you call it?
>> No frequencies above half the sample rate exist in a >> set of samples. > > Of course they exist. It's just that if they are there *and* the > baseband spectrum is also there, then they are aliased together > and you can't tell them apart (without some other external > information).
In general, they can't be separated even with special information. It's hard to unscramble eggs or sounds.
> Actually, in practice, since low pass filters only approximate > true bandlimiting filters of infinite width, they are always there, > just hopefully below the desired noise floor.
So is thermal noise. We live with what we have to. Jerry -- Engineering is the art of making what you want from things you can get. &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;
Reply by Ron N. January 4, 20072007-01-04
Jerry Avins wrote:
> The spectra are easy to compute *for continuous waveforms*. They are > tabulated in many books. You cannot deal with continuous waveforms using > a computer,
You forget about symbolic math programs, which can deal with some continuous waveforms if they are functions of a form that the symbolic programs can handle (symbolic integration, convolution, etc.) A computer can also use the book tabulations. IMHO. YMMV. -- rhn A.T nicholson d.0.t C-o-M
Reply by Ron N. January 4, 20072007-01-04
Jerry Avins wrote:
> The spectra are easy to compute *for continuous waveforms*. They are > tabulated in many books. You cannot deal with continuous waveforms using > a computer, and if you sample the waveform you bandlimit it *whether you > intend to or not*.
Sampling does not automatically bandlimit. You can undersample for some demodulation schemes, for instance. The sampler does not know which band you want. You have to pick a band filter (low pass, or band pass for your selected frequency range).
> No frequencies above half the sample rate exist in a > set of samples.
Of course they exist. It's just that if they are there *and* the baseband spectrum is also there, then they are aliased together and you can't tell them apart (without some other external information). Actually, in practice, since low pass filters only approximate true bandlimiting filters of infinite width, they are always there, just hopefully below the desired noise floor. IMHO. YMMV. -- rhn A.T nicholson d.0.t C-o-M
Reply by Jerry Avins January 4, 20072007-01-04
john john wrote:
> Jerry Avins ha scritto: > >> No. The spectra of square and triangular waves are infinite series. >> Computers can't deal with infinities. If you truncate the series, the >> waveforms you get might surprise you. >> >> What are you trying to see?
> I know about infinite series and I don't cut the series. I'm just > trying to see the frequency spectrum of a waveform but every frequency > with its correct phase. I won't the infinite but just the firsts ten > frequency.
The spectra are easy to compute *for continuous waveforms*. They are tabulated in many books. You cannot deal with continuous waveforms using a computer, and if you sample the waveform you bandlimit it *whether you intend to or not*. No frequencies above half the sample rate exist in a set of samples. Jerry -- Engineering is the art of making what you want from things you can get. &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;