Reply by December 12, 20072007-12-12
On Dec 6, 6:20 am, "finnyfin" <ska...@hotmail.com> wrote:
> So far I've just been doing lots of reading, and using the > example code dsk_app.c below, I can have my audio signal pass through from > line input to line output. I have a couple algorithms that I've created > using Matlab for delay and distortion, I just don't know how to implement > it within this code or if that's possible
> /* > * copyData() - Copy one buffer with length elements to another. > */ > void copyData(Int16 *inbuf, Int16 *outbuf, Int16 length) > { > Int16 i = 0; > > for (i = 0; i < length; i++) { > outbuf[i] = inbuf[i]; > } > > }
I have used the C6416 DSK, which is very similar, and I think the function that you might want to reimplement is the copyData function. In the code you posted, it just passes the input to the output. Keith
Reply by finnyfin December 6, 20072007-12-06
Hello, I'm a computer engineering student and I'm new to the world of DSPs.
 I've decided for a major project to design a digital audio effects
proccesor, so that I can plug my guitar into it and have it add some
effect in real-time and play it out.  I'm having some trouble
understanding how and where to do the actual processing of the audio
signal.  So far I've just been doing lots of reading, and using the
example code dsk_app.c below, I can have my audio signal pass through from
line input to line output.  I have a couple algorithms that I've created
using Matlab for delay and distortion, I just don't know how to implement
it within this code or if that's possible, though it seems to me like a
template of sorts for this reason.  Any information that anyone could
provide me with on this is extremely helpful and appreciated, as I have to
get an understanding of this in a timely manner for school deadlines. 
Thanks!
-Fons

/*
 *  Copyright 2003 by Spectrum Digital Incorporated.
 *  All rights reserved. Property of Spectrum Digital Incorporated.
 */

/*
 *  ======== dsk_app.c ========
 *
 *  Version 1.00
 *
 *  This example digitally processes audio data from the line input on
the
 *  AIC23 codec and plays the result on the line output.  It uses the
McBSP
 *  and EDMA to efficiently handle the data transfer without intervention
from
 *  the DSP.
 *
 *  Data transfer
 *
 *  Audio data is transferred back and forth from the codec through
McBSP2,
 *  a bidirectional serial port.  The EDMA is configured to take every
16-bit
 *  signed audio sample arriving on McBSP1 and store it in a buffer in
memory
 *  until it can be processed.  Once it has been processed, the EDMA
 *  controller sends the data back to McBSP1 for transmission.
 *
 *  A second serial port, McBSP0 is used to control/configure the AIC23. 
The
 *  codec receives serial commands through McBSP0 that set configuration
 *  parameters such as volume, sample rate and data format.
 *
 *  In addition to basic EDMA transfers, this example uses 2 special
 *  techniques to make audio processing more convenient and efficient:
 *
 *  1)  Ping-pong data buffering in memory
 *  2)  Linked EDMA transfers
 *
 *  Applications with single buffers for receive and transmit data are
 *  very tricky and timing dependent because new data constantly
overwrites
 *  the data being transmitted.  Ping-pong buffering is a technique where
two
 *  buffers (referred to as the PING buffer and the PONG buffer) are used
for
 *  a data transfer instead of only one.  The EDMA is configured to fill
the
 *  PING buffer first, then the PONG buffer.  While the PONG buffer is
being
 *  filled, the PING buffer can be processed with the knowledge that the
 *  current EDMA transfer won't overwrite it.  This example uses
ping-pong
 *  buffers on both transmit and receive ends for a total of four
buffers.
 *
 *  The EDMA controller must be configured slightly differently for each
 *  buffer.  When a buffer is filled, the EDMA controller generates an
 *  interrupt.  The interrupt handler must reload the configuration
 *  for the next buffer before the next audio sample arrives.  An EDMA
 *  feature called linked transfers is used to make this event less time
 *  critical.  Each configuration is created in advance and the EDMA
 *  controller automatically links to the next configuration when the
 *  current configuration is finished.  An interrupt is still generated,
 *  but it serves only to signal the DSP that it can process the data.
 *  The only time constraint is that all the audio data must be processed
 *  before the the active buffer fills up, which is much longer than the
 *  time between audio samples.  It is much easier to satisfy real-time
 *  constraints with this implementation.
 *
 *  Program flow
 *
 *  When the program is run, the individual DSP/BIOS modules are
initialized
 *  as configured in dsk_app.cdb with the DSP/BIOS configuration tool. 
The
 *  main() function is then called as the main user thread.  In this
example
 *  main() performs application initialization and starts the EDMA data
 *  transfers.  When main exits, control passes back entirely to DSP/BIOS
 *  which services any interrupts or threads on an as-needed basis.
 *
 *  The edmaHwi() interrupt service routine is called when a buffer has
been
 *  filled.  It contains a state variable named pingOrPong that indicates
 *  whether the buffer is a PING or PONG buffer.  dmaHwi switches the
buffer
 *  state to the opposite buffer and calls the SWI thread processBuffer
to
 *  process the audio data.
 *
 *  Other Functions
 *
 *  The example includes a few other functions that are executed in the
 *  background as examples of the multitasking that DSP/BIOS is capable
of:
 *
 *  1)  blinkLED() toggles LED #0 every 500ms if DIP switch #0 is
depressed.
 *      It is a periodic thread with a period of 500 ticks.
 *
 *  2)  load() simulates a 20-25% dummy load if DIP switch #1 is
depressed.
 *      It represents other computation that may need to be done.  It is
a
 *      periodic thread with a period of 10ms.
 *
 *  Please see the 6713 DSK help file under Software/Examples for more
 *  detailed information on this example.
 */

/*
 *  DSP/BIOS is configured using the DSP/BIOS configuration tool. 
Settings
 *  for this example are stored in a configuration file called
dsk_app.cdb.
 *  At compile time, Code Composer will auto-generate DSP/BIOS related
files
 *  based on these settings.  A header file called dsk_appcfg.h contains
the
 *  results of the autogeneration and must be included for proper
operation.
 *  The name of the file is taken from dsk_app.cdb and adding cfg.h.
 */
#include "dsk_appcfg.h"

/*
 *  These are include files that support interfaces to BIOS and CSL
modules
 *  used by the program.
 */
#include <std.h>
#include <swi.h>
#include <log.h>
#include <c6x.h>
#include <csl.h>
#include <csl_edma.h>
#include <csl_irq.h>
#include <csl_mcbsp.h>

#include "echocfg.h"

#include "echo.h"

/*
 *  The 6713 DSK Board Support Library is divided into several modules,
each
 *  of which has its own include file.  The file dsk6713.h must be
included
 *  in every program that uses the BSL.  This example also uses the
 *  DIP, LED and AIC23 modules.
 */
#include "dsk6713.h"
#include "dsk6713_led.h"
#include "dsk6713_dip.h"
#include "aic23.h"

/* Global declarations */
int cancelerLoad = 0;
int decoderLoad = 0;
int encoderLoad = 0;

int echoInFrame  = 0;           /* current input echo frame number */
int echoOutFrame = 2;           /* current output echo frame number */
int encoderFrame  = 0;          /* current input audio frame number */
int decoderFrame  = 0;          /* current output audio frame number */

int audioInBuf[AUDIOBUFLEN];    /* audio input data */
int audioOutBuf[AUDIOBUFLEN];   /* audio output data */
int codeInBuf[CODEBUFLEN];      /* encoded input data */
int codeOutBuf[CODEBUFLEN];     /* encoded output data */

/* Function prototypes */
void initIrq(void);
void initMcbsp(void);
void initEdma(void);
void copyData(Int16 *inbuf, Int16 *outbuf, Int16 length);
void processBuffer(void);
void edmaHwi(void);

void echo(int argc, char *argv[]);
extern Void ECHO_load(int load);

static Void cancelerAlg(int *input, int *output);
static Void decoderAlg(int *input, int *output);
static Void encoderAlg(int *input, int *output);

/* Constants for the buffered ping-pong transfer */
#define BUFFSIZE 1000
#define PING 0
#define PONG 1

/*
 * Data buffer declarations - the program uses four logical buffers of
size
 * BUFFSIZE, one ping and one pong buffer on both receive and transmit
sides.
 */
Int16 gBufferXmtPing[BUFFSIZE];  // Transmit PING buffer
Int16 gBufferXmtPong[BUFFSIZE];  // Transmit PONG buffer

Int16 gBufferRcvPing[BUFFSIZE];  // Receive PING buffer
Int16 gBufferRcvPong[BUFFSIZE];  // Receive PONG buffer

EDMA_Handle hEdmaXmt;            // EDMA channel handles
EDMA_Handle hEdmaReloadXmtPing;
EDMA_Handle hEdmaReloadXmtPong;
EDMA_Handle hEdmaRcv;
EDMA_Handle hEdmaReloadRcvPing;
EDMA_Handle hEdmaReloadRcvPong;

MCBSP_Handle hMcbsp1;                 // McBSP1 (codec data) handle

Int16 gXmtChan;                       // TCC codes (see initEDMA())
Int16 gRcvChan;


/*
 *  EDMA Config data structure
 */

/* Transmit side EDMA configuration */
EDMA_Config gEdmaConfigXmt = {
    EDMA_FMKS(OPT, PRI, HIGH)          |  // Priority
    EDMA_FMKS(OPT, ESIZE, 16BIT)       |  // Element size
    EDMA_FMKS(OPT, 2DS, NO)            |  // 2 dimensional source?
    EDMA_FMKS(OPT, SUM, INC)           |  // Src update mode
    EDMA_FMKS(OPT, 2DD, NO)            |  // 2 dimensional dest
    EDMA_FMKS(OPT, DUM, NONE)          |  // Dest update mode
    EDMA_FMKS(OPT, TCINT, YES)         |  // Cause EDMA interrupt?
    EDMA_FMKS(OPT, TCC, OF(0))         |  // Transfer complete code
    EDMA_FMKS(OPT, LINK, YES)          |  // Enable link parameters?
    EDMA_FMKS(OPT, FS, NO),               // Use frame sync?

    (Uint32)&gBufferXmtPing,              // Src address

    EDMA_FMK (CNT, FRMCNT, NULL)       |  // Frame count
    EDMA_FMK (CNT, ELECNT, BUFFSIZE),     // Element count

    EDMA_FMKS(DST, DST, OF(0)),           // Dest address

    EDMA_FMKS(IDX, FRMIDX, DEFAULT)    |  // Frame index value
    EDMA_FMKS(IDX, ELEIDX, DEFAULT),      // Element index value

    EDMA_FMK (RLD, ELERLD, NULL)       |  // Reload element
    EDMA_FMK (RLD, LINK, NULL)            // Reload link
};

/* Receive side EDMA configuration */
EDMA_Config gEdmaConfigRcv = {
    EDMA_FMKS(OPT, PRI, HIGH)          |  // Priority
    EDMA_FMKS(OPT, ESIZE, 16BIT)       |  // Element size
    EDMA_FMKS(OPT, 2DS, NO)            |  // 2 dimensional source?
    EDMA_FMKS(OPT, SUM, NONE)          |  // Src update mode
    EDMA_FMKS(OPT, 2DD, NO)            |  // 2 dimensional dest
    EDMA_FMKS(OPT, DUM, INC)           |  // Dest update mode
    EDMA_FMKS(OPT, TCINT, YES)         |  // Cause EDMA interrupt?
    EDMA_FMKS(OPT, TCC, OF(0))         |  // Transfer complete code
    EDMA_FMKS(OPT, LINK, YES)          |  // Enable link parameters?
    EDMA_FMKS(OPT, FS, NO),               // Use frame sync?

    EDMA_FMKS(SRC, SRC, OF(0)),           // Src address

    EDMA_FMK (CNT, FRMCNT, NULL)       |  // Frame count
    EDMA_FMK (CNT, ELECNT, BUFFSIZE),     // Element count

    (Uint32)&gBufferRcvPing,              // Dest address

    EDMA_FMKS(IDX, FRMIDX, DEFAULT)    |  // Frame index value
    EDMA_FMKS(IDX, ELEIDX, DEFAULT),      // Element index value

    EDMA_FMK (RLD, ELERLD, NULL)       |  // Reload element
    EDMA_FMK (RLD, LINK, NULL)            // Reload link
};

/* McBSP codec data channel configuration */
static MCBSP_Config mcbspCfg1 = {
        MCBSP_FMKS(SPCR, FREE, NO)              |
        MCBSP_FMKS(SPCR, SOFT, NO)              |
        MCBSP_FMKS(SPCR, FRST, YES)             |
        MCBSP_FMKS(SPCR, GRST, YES)             |
        MCBSP_FMKS(SPCR, XINTM, XRDY)           |
        MCBSP_FMKS(SPCR, XSYNCERR, NO)          |
        MCBSP_FMKS(SPCR, XRST, YES)             |
        MCBSP_FMKS(SPCR, DLB, OFF)              |
        MCBSP_FMKS(SPCR, RJUST, RZF)            |
        MCBSP_FMKS(SPCR, CLKSTP, DISABLE)       |
        MCBSP_FMKS(SPCR, DXENA, OFF)            |
        MCBSP_FMKS(SPCR, RINTM, RRDY)           |
        MCBSP_FMKS(SPCR, RSYNCERR, NO)          |
        MCBSP_FMKS(SPCR, RRST, YES),

        MCBSP_FMKS(RCR, RPHASE, SINGLE)         |
        MCBSP_FMKS(RCR, RFRLEN2, DEFAULT)       |
        MCBSP_FMKS(RCR, RWDLEN2, DEFAULT)       |
        MCBSP_FMKS(RCR, RCOMPAND, MSB)          |
        MCBSP_FMKS(RCR, RFIG, NO)               |
        MCBSP_FMKS(RCR, RDATDLY, 0BIT)          |
        MCBSP_FMKS(RCR, RFRLEN1, OF(1))         |
        MCBSP_FMKS(RCR, RWDLEN1, 16BIT)         |
        MCBSP_FMKS(RCR, RWDREVRS, DISABLE),

        MCBSP_FMKS(XCR, XPHASE, SINGLE)         |
        MCBSP_FMKS(XCR, XFRLEN2, DEFAULT)       |
        MCBSP_FMKS(XCR, XWDLEN2, DEFAULT)       |
        MCBSP_FMKS(XCR, XCOMPAND, MSB)          |
        MCBSP_FMKS(XCR, XFIG, NO)               |
        MCBSP_FMKS(XCR, XDATDLY, 0BIT)          |
        MCBSP_FMKS(XCR, XFRLEN1, OF(1))         |
        MCBSP_FMKS(XCR, XWDLEN1, 16BIT)         |
        MCBSP_FMKS(XCR, XWDREVRS, DISABLE),

        MCBSP_FMKS(SRGR, GSYNC, DEFAULT)        |
        MCBSP_FMKS(SRGR, CLKSP, DEFAULT)        |
        MCBSP_FMKS(SRGR, CLKSM, DEFAULT)        |
        MCBSP_FMKS(SRGR, FSGM, DEFAULT)         |
        MCBSP_FMKS(SRGR, FPER, DEFAULT)         |
        MCBSP_FMKS(SRGR, FWID, DEFAULT)         |
        MCBSP_FMKS(SRGR, CLKGDV, DEFAULT),

        MCBSP_MCR_DEFAULT,
        MCBSP_RCER_DEFAULT,
        MCBSP_XCER_DEFAULT,

        MCBSP_FMKS(PCR, XIOEN, SP)              |
        MCBSP_FMKS(PCR, RIOEN, SP)              |
        MCBSP_FMKS(PCR, FSXM, EXTERNAL)         |
        MCBSP_FMKS(PCR, FSRM, EXTERNAL)         |
        MCBSP_FMKS(PCR, CLKXM, INPUT)           |
        MCBSP_FMKS(PCR, CLKRM, INPUT)           |
        MCBSP_FMKS(PCR, CLKSSTAT, DEFAULT)      |
        MCBSP_FMKS(PCR, DXSTAT, DEFAULT)        |
        MCBSP_FMKS(PCR, FSXP, ACTIVEHIGH)       |
        MCBSP_FMKS(PCR, FSRP, ACTIVEHIGH)       |
        MCBSP_FMKS(PCR, CLKXP, FALLING)         |
        MCBSP_FMKS(PCR, CLKRP, RISING)
};

/* Codec configuration settings */
AIC23_Params config = {
    0x0017, // 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume
    0x0017, // 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume
    0x00ff, // 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume
    0x00ff, // 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume
    0x0011, // 4 DSK6713_AIC23_ANAPATH    Analog audio path control
    0x0000, // 5 DSK6713_AIC23_DIGPATH    Digital audio path control
    0x0000, // 6 DSK6713_AIC23_POWERDOWN  Power down control
    0x0043, // 7 DSK6713_AIC23_DIGIF      Digital audio interface format
    0x0001, // 8 DSK6713_AIC23_SAMPLERATE Sample rate control
    0x0001  // 9 DSK6713_AIC23_DIGACT     Digital interface activation
};


/* --------------------------- main() function --------------------------
*/
/*
 *  main() - The main user task.  Performs application initialization and
 *           starts the data transfer.
 */
void main()
{
    /* Initialize Board Support Library */
    DSK6713_init();

    /* Initialize LEDs and DIP switches */
    DSK6713_LED_init();
    DSK6713_DIP_init();

    /* Clear buffers */
    memset((void *)gBufferXmtPing, 0, BUFFSIZE * 4 * 2);

    AIC23_setParams(&config);  // Configure the codec

    initMcbsp();               // Initialize McBSP1 for audio transfers

    IRQ_globalDisable();       // Disable global interrupts during setup

    initEdma();                // Initialize the EDMA controller

    initIrq();                 // Initialize interrupts

    IRQ_globalEnable();        // Re-enable global interrupts
}


/* ------------------------Helper Functions -----------------------------
*/

/*
 *  initMcbsp() - Initialize the McBSP for codec data transfers using the
 *                configuration define at the top of this file.
 */
void initMcbsp()
{
    /* Open the codec data McBSP */
    hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET);

    /* Configure the codec to match the AIC23 data format */
    MCBSP_config(hMcbsp1, &mcbspCfg1);

    /* Start the McBSP running */
    MCBSP_start(hMcbsp1, MCBSP_XMIT_START | MCBSP_RCV_START |
        MCBSP_SRGR_START | MCBSP_SRGR_FRAMESYNC, 220);
}


/*
 *  initIrq() - Initialize and enable the DMA receive interrupt using the
CSL.
 *              The interrupt service routine for this interrupt is
edmaHwi.
 */
void initIrq(void)
{
    /* Enable EDMA interrupts to the CPU */
    IRQ_clear(IRQ_EVT_EDMAINT);    // Clear any pending EDMA interrupts
    IRQ_enable(IRQ_EVT_EDMAINT);   // Enable EDMA interrupt
}


/*
 *  initEdma() - Initialize the DMA controller.  Use linked transfers to
 *               automatically transition from ping to pong and
visa-versa.
 */
void initEdma(void)
{
    /* Configure transmit channel */
    hEdmaXmt = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);  // get
hEdmaXmt handle and reset channel
    hEdmaReloadXmtPing = EDMA_allocTable(-1);               // get
hEdmaReloadXmtPing handle
    hEdmaReloadXmtPong = EDMA_allocTable(-1);               // get
hEdmaReloadXmtPong handle

    gEdmaConfigXmt.dst = MCBSP_getXmtAddr(hMcbsp1);         // set the
desination address to McBSP1 DXR

    gXmtChan = EDMA_intAlloc(-1);                           // get an open
TCC
    gEdmaConfigXmt.opt |= EDMA_FMK(OPT,TCC,gXmtChan);       // set TCC to
gXmtChan

    EDMA_config(hEdmaXmt, &gEdmaConfigXmt);                 // then
configure the registers
    EDMA_config(hEdmaReloadXmtPing, &gEdmaConfigXmt);       // and the
reload for Ping

    gEdmaConfigXmt.src = EDMA_SRC_OF(gBufferXmtPong);       // change the
structure to have a source of Pong
    EDMA_config(hEdmaReloadXmtPong, &gEdmaConfigXmt);       // and
configure the reload for Pong

    EDMA_link(hEdmaXmt,hEdmaReloadXmtPong);                 // link the
regs to Pong
    EDMA_link(hEdmaReloadXmtPong,hEdmaReloadXmtPing);       // link Pong
to Ping
    EDMA_link(hEdmaReloadXmtPing,hEdmaReloadXmtPong);       // and link
Ping to Pong

    /* Configure receive channel */
    hEdmaRcv = EDMA_open(EDMA_CHA_REVT1, EDMA_OPEN_RESET);  // get
hEdmaRcv handle and reset channel
    hEdmaReloadRcvPing = EDMA_allocTable(-1);               // get
hEdmaReloadRcvPing handle
    hEdmaReloadRcvPong = EDMA_allocTable(-1);               // get
hEdmaReloadRcvPong handle

    gEdmaConfigRcv.src = MCBSP_getRcvAddr(hMcbsp1);         // and the
desination address to McBSP1 DXR

    gRcvChan = EDMA_intAlloc(-1);                           // get an open
TCC
    gEdmaConfigRcv.opt |= EDMA_FMK(OPT,TCC,gRcvChan);       // set TCC to
gRcvChan

    EDMA_config(hEdmaRcv, &gEdmaConfigRcv);                 // then
configure the registers
    EDMA_config(hEdmaReloadRcvPing, &gEdmaConfigRcv);       // and the
reload for Ping

    gEdmaConfigRcv.dst = EDMA_DST_OF(gBufferRcvPong);       // change the
structure to have a destination of Pong
    EDMA_config(hEdmaReloadRcvPong, &gEdmaConfigRcv);       // and
configure the reload for Pong

    EDMA_link(hEdmaRcv,hEdmaReloadRcvPong);                 // link the
regs to Pong
    EDMA_link(hEdmaReloadRcvPong,hEdmaReloadRcvPing);       // link Pong
to Ping
    EDMA_link(hEdmaReloadRcvPing,hEdmaReloadRcvPong);       // and link
Ping to Pong

    /* Enable interrupts in the EDMA controller */
    EDMA_intClear(gXmtChan);
    EDMA_intClear(gRcvChan);                                // clear any
possible spurious interrupts

    EDMA_intEnable(gXmtChan);                               // enable EDMA
interrupts (CIER)
    EDMA_intEnable(gRcvChan);                               // enable EDMA
interrupts (CIER)

    EDMA_enableChannel(hEdmaXmt);                           // enable EDMA
channel
    EDMA_enableChannel(hEdmaRcv);                           // enable EDMA
channel

    /* Do a dummy write to generate the first McBSP transmit event */
    MCBSP_write(hMcbsp1, 0);
}


/*
 *  copyData() - Copy one buffer with length elements to another.
 */
void copyData(Int16 *inbuf, Int16 *outbuf, Int16 length)
{
    Int16 i = 0;

    for (i = 0; i < length; i++) {
        outbuf[i]  = inbuf[i];
    }
}


/* ---------------------- Interrupt Service Routines --------------------
*/

/*
 *  edmaHwi() - Interrupt service routine for the DMA transfer.  It is
 *              triggered when a complete DMA receive frame has been
 *              transferred.   The edmaHwi ISR is inserted into the
interrupt
 *              vector table at compile time through a setting in the
DSP/BIOS
 *              configuration under Scheduling --> HWI --> HWI_INT8. 
edmaHwi
 *              uses the DSP/BIOS Dispatcher to save register state and
make
 *              sure the ISR co-exists with other DSP/BIOS functions.
 */
void edmaHwi(void)
{
    static Uint32 pingOrPong = PING;  // Ping-pong state variable
    static Int16 xmtdone = 0, rcvdone = 0;

    /* Check CIPR to see which transfer completed */
    if (EDMA_intTest(gXmtChan))
    {
        EDMA_intClear(gXmtChan);
        xmtdone = 1;
    }
    if (EDMA_intTest(gRcvChan))
    {
        EDMA_intClear(gRcvChan);
        rcvdone = 1;
    }

    /* If both transfers complete, signal processBufferSwi to handle */
    if (xmtdone && rcvdone)
    {
        if (pingOrPong==PING)
        {
            SWI_or(&processBufferSwi, PING);
            pingOrPong = PONG;
        } else
        {
            SWI_or(&processBufferSwi, PONG);
            pingOrPong = PING;
        }
        rcvdone = 0;
        xmtdone = 0;
    }
}


/* ------------------------------- Threads ------------------------------
*/

/*
 *  processBuffer() - Process audio data once it has been received.
 */
void processBuffer(void)
{
    Uint32 pingPong;

    /* Get contents of mailbox posted by edmaHwi */
    pingPong =  SWI_getmbox();

    /* Copy data from transmit to receive, could process audio here */
    if (pingPong == PING) {
        /* Toggle LED #3 as a visual cue */
        DSK6713_LED_toggle(3);

        /* Copy receive PING buffer to transmit PING buffer */
        copyData(gBufferRcvPing, gBufferXmtPing, BUFFSIZE);
    } else {
        /* Toggle LED #2 as a visual cue */
        DSK6713_LED_toggle(2);

        /* Copy receive PONG buffer to transmit PONG buffer */
        copyData(gBufferRcvPong, gBufferXmtPong, BUFFSIZE);
    }
}

/*
 *  blinkLED() - Periodic thread (PRD) that toggles LED #0 every 500ms if
 *               DIP switch #0 is depressed.  The thread is configured
 *               in the DSP/BIOS configuration tool under Scheduling -->
 *               PRD --> PRD_blinkLed.  The period is set there at 500
 *               ticks, with each tick corresponding to 1ms in real+-

 *               time.
 */
void blinkLED(void)
{
    /* Toggle LED #0 if DIP switch #0 is off (depressed) */
    if (!DSK6713_DIP_get(0))
        DSK6713_LED_toggle(0);
}


/*
 *  load() - PRD that simulates a 20-25% dummy load on a 225MHz 6713 if
 *           DIP switch #1 is depressed.  The thread is configured in
 *           the DSP/BIOS configuration tool under Scheduling --> PRD
 *           PRD_load.  The period is set there at 10 ticks, which each
tick
 *           corresponding to 1ms in real time.
 */
void load(void)
{
    volatile Uint32 i;

    if (!DSK6713_DIP_get(1))
       // for (i = 0; i < 30000; i++);
	echo(void, void);
}