DSPRelated.com
Forums

FIR gain

Started by Philip Newman May 8, 2004
"Jerry Avins" <jya@ieee.org> wrote in message
news:409d68eb$0$3000$61fed72c@news.rcn.com...
> Philip Newman wrote: > > > I have an FIR filter with the system equation y[n] = > > 0.25x[n]+0.5x[n-1]+0.25x[n-2] which gives an impulse response of h =
[0.25
> > 0.5 0.25] > > > > without resorting to Z-transform analysis, how can I work out the gain
of
> > the filter at DC and at the half nyquist frequency? > > > > I think the gain of the filter at DC is the sum of the impulse response,
in
> > this case 1. but what about the half-nyquist? > > > > I can think of it as a series of the impulse input, [1 0 0 0 0 ...] and
then
> > stepping through every other one (ie half) and summing that? > > > > I'm not sure how I am supposed to do this, > > > > If anyone can help, please let me know > > > > cheers > > > > Phil > > The gain at DC is easy: the sum of the coefficients, in your case, one. > People throw "Nyquist frequency" around sloppily. Do you mean the > sampling rate, or half of it? > > At f = Fs/2 (the simpler case), there are two samples per cycle. Assume > a cosine, so the first sample is 1, the second, -1, and the third, 1. > Multiplying by the coefficients and adding, the result is 0. Check again > 90 degrees away. With a sine, the samples are all 0; again the result is > 0; that's the response. > > If by half Nyquist you mean Fs/4, there are 4 cycles per sample. In that > case, again using a cosine, the samples will be 1, 0, -1. Again, the > result is zero. With a sin, the samples are 0, 1, 0. The result is .5. > The response is the geometric mean of the cos result and the sin result. > The filter's attenuation is 6 dB. > > The coefficients describe a binomial filter. The class has interesting > properties, not the least of which is being intuitive. They make decent > but hardly optimum low-passes. > > Jerry > -- > Engineering is the art of making what you want from things you can get. > &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295; >
thanks Jerry, good answer. You might wish to know that I posted a solution for my previous thread about Satellite Range. Cheers Phil
Philip Newman wrote:
 > "Jerry Avins" <jya@ieee.org> wrote in message
 > news:409d68eb$0$3000$61fed72c@news.rcn.com...

   ...

>>The response is the geometric mean of the cos result and the sin result.
That's wrong. Square root of the sum of the squares is right. It's basically a rectangular-to-polar transformation.
> thanks Jerry, good answer.
I'm pleased to hear it.
> You might wish to know that I posted a solution for my previous thread about > Satellite Range.
I noticed. Good. Jerry -- Engineering is the art of making what you want from things you can get. &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;