Sign in

Not a member? | Forgot your Password?

Search Online Books

Search tips

Free Online Books

Free PDF Downloads

A Quadrature Signals Tutorial: Complex, But Not Complicated

Understanding the 'Phasing Method' of Single Sideband Demodulation

Complex Digital Signal Processing in Telecommunications

Introduction to Sound Processing

C++ Tutorial

Introduction of C Programming for DSP Applications

Fixed-Point Arithmetic: An Introduction

Cascaded Integrator-Comb (CIC) Filter Introduction


FFT Spectral Analysis Software

See Also

Embedded SystemsFPGA

Chapter Contents:

Search Physical Audio Signal Processing


Book Index | Global Index

Would you like to be notified by email when Julius Orion Smith III publishes a new entry into his blog?


Simplified Impedance Analysis

The above results are quickly derived from the general reflection-coefficient for force waves (or voltage waves, pressure waves, etc.):

$\displaystyle \zbox {\rho = \frac{R_2-R_1}{R_2+R_1} = \frac{\mbox{Impedance Step}}{\mbox{Impedance Sum}}} \protect$ (10.17)

where $ \rho$ is the reflection coefficient of impedance $ R_2$ as ``seen'' from impedance $ R_1$. If a force wave $ f^{{+}}$ traveling along in impedance $ R_1$ suddenly hits a new impedance $ R_2$, the wave will split into a reflected wave $ f^{{-}}=\rho f^{{+}}$, and a transmitted wave $ (1+\rho)f^{{+}}$. It therefore follows that a velocity wave $ v^{+}$ will split into a reflected wave $ v^{-}= - \rho v^{+}$ and transmitted wave $ (1-\rho)v^{+}$. This rule is derived in §C.8.4 (and implicitly above as well).

In the mass-string-collision problem, we can immediately write down the force reflectance of the mass as seen from either string:

$\displaystyle \zbox {\hat{\rho}_f(s) \eqsp \frac{(ms+R) - R}{(ms+R) + R} \eqsp \frac{ms}{ms+2R}}

That is, waves in the string are traveling through wave impedance $ R$, and when they hit the mass, they are hitting the series combination of the mass impedance $ ms$ and the wave impedance $ R$ of the string on the other side of the mass. Thus, in terms of Eq.$ \,$(9.17) above, $ R_1=R$ and $ R_2=ms+R$.

Since, by the Ohm's-law relations,

$\displaystyle \hat{\rho}_f(s) \isdefs \frac{F^{-}}{F^{+}}
\eqsp \frac{-RV^{-}}{RV^{+}}
\eqsp - \frac{V^{-}}{V^{+}}
\isdefs -\hat{\rho}_v(s).

we have that the velocity reflectance is simply

$\displaystyle \zbox {\hat{\rho}_v(s) \isdefs \frac{V^{-}}{V^{+}} \eqsp -\hat{\rho}_f(s) \isdefs -\frac{F^{-}}{F^{+}}.}

Previous: Mass Reflectance from Either String
Next: Mass Transmittance from String to String

Order a Hardcopy of Physical Audio Signal Processing

About the Author: Julius Orion Smith III
Julius Smith's background is in electrical engineering (BS Rice 1975, PhD Stanford 1983). He is presently Professor of Music and (by courtesy) of Electrical Engineering at Stanford's Center for Computer Research in Music and Acoustics (CCRMA), teaching courses and pursuing research related to signal processing applied to music and audio systems. See for details.


No comments yet for this page

Add a Comment
You need to login before you can post a comment (best way to prevent spam). ( Not a member? )