## Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized signal's spectrum. ...## Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Other articles in this series:

- Part 1: Russian Peasant Multiplication

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be better if I could just filter everything out. Filtering is one of those things that comes up a lot in signal processing. It’s either ridiculously easy, or ridiculously difficult, depending on what it is that you’re trying to filter.

I’m going to show you a...

## Understanding and Implementing the Sliding DFT

In many applications the detection or processing of signals in the frequency domain offers an advantage over performing the same task in the time-domain. Sometimes the advantage is just a simpler or more conceptually straightforward algorithm, and often the largest barrier to working in the frequency domain is the complexity or latency involved in the Fast Fourier Transform computation. If the frequency-domain data must be updated frequently in a real-time application, the complexity and latency of the FFT can become a significant impediment to...

## Exact Frequency Formula for a Pure Real Tone in a DFT

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a watershed event in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is an extension of my previous blog article:

## DFT Bin Value Formulas for Pure Real Tones

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:

## DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with the only distinction being rotation as well as rescaling will occur. Most of the signals analyzed...

## Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images

This blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original time sequence's spectrum.

Background

The traditional way to interpolate (sample rate increase) an x(n) time domain sequence is shown in Figure 1.

Figure 1

The '↑ L' operation in Figure 1 means to insert L–1...

## The Exponential Nature of the Complex Unit Circle

IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex NumbersThe variable $ i $ stands for the square root of negative one. This is the...

## Complex Down-Conversion Amplitude Loss

This blog illustrates the signal amplitude loss inherent in a traditional complex down-conversion system. (In the literature of signal processing, complex down-conversion is also called "quadrature demodulation.")

[This document can be downloaded in pdf format here]

The general idea behind complex down-conversion is shown in Figure 1(a). And the traditional hardware block diagram of a complex down-converter is shown in Figure 1(b).

Let's assume the...

## The Sampling Theorem - An Intuitive Approach

Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem. Feel free to have a look and share your thoughts by commenting this blog post.

## Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Other articles in this series:

- Part 1: Russian Peasant Multiplication

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be better if I could just filter everything out. Filtering is one of those things that comes up a lot in signal processing. It’s either ridiculously easy, or ridiculously difficult, depending on what it is that you’re trying to filter.

I’m going to show you a...

## A Fixed-Point Introduction by Example

IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

Download the pdf versionThere are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY...

## Understanding and Implementing the Sliding DFT

In many applications the detection or processing of signals in the frequency domain offers an advantage over performing the same task in the time-domain. Sometimes the advantage is just a simpler or more conceptually straightforward algorithm, and often the largest barrier to working in the frequency domain is the complexity or latency involved in the Fast Fourier Transform computation. If the frequency-domain data must be updated frequently in a real-time application, the complexity and latency of the FFT can become a significant impediment to...

## An Interesting Fourier Transform - 1/f Noise

Power law functions are common in science and engineering. A surprising property is that the Fourier transform of a power law is also a power law. But this is only the start- there are many interesting features that soon become apparent. This may even be the key to solving an 80-year mystery in physics.

It starts with the following Fourier transform:

The general form is tα ↔ ω-(α+1), where α is a constant. For example, t2 ↔ ω–3 and t -0.75 ↔ ω–0.25....

## Handling Spectral Inversion in Baseband Processing

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process the signal at baseband rather...

## Python scipy.signal IIR Filtering: An Example

In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ). In this post I am going to conclude the IIR filter design review with an example.

Previous posts:

## Free DSP Books on the Internet

While surfing the "net" I have occasionally encountered signal processing books whose chapters could be downloaded to my computer. I started keeping a list of those books and, over the years, that list has grown to over forty books. Perhaps the list will be of interest to you.

Please know, all of the listed books are copyrighted. The copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As such, be aware that using any of these books as promotional material is...

## Python scipy.signal IIR Filter Design

IntroductionThe following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package. This post, mainly, covers how to use the scipy.signal package and is not a thorough introduction to IIR filter design. For complete coverage of IIR filter design and structure see one of the references.

Filter SpecificationBefore providing some examples lets review the...

## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency (DIF) and an N-point decimation-in-time (DIT) FFT.

The vast majority of FFT...

## The Sampling Theorem - An Intuitive Approach

Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem. Feel free to have a look and share your thoughts by commenting this blog post.

## DSP Related Math: Nice Animated GIFs

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts. I thought there would be some value in aggregating the DSP related gifs on one page.

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...## DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!

I have two news to share with you today.

The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you...

## Collaborative Writing Experiment: Your Favorite DSP Websites

You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.

I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!). It was amusing to keep an eye on the "food you will bring" document we had created for this and watch several of our guests add to it...

## DSPRelated Finally on Twitter!

Hello!

It's been a while since you've heard from me - and there are many reasons why:

1 - I've made a clown of myself (video here)

2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).

3- I've been working on getting up to speed with social networks and especially Twitter. I have...

## Two jobs

For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.

I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other as a parent of three kids. My job as a web publisher affords me a lot of flexibility with my schedule, which I am really...

## Do you like the new Comments System?

I have just finished implementing a new comments system for the blogs. Do you like it?

Please share your thoughts with me by adding a comment.

I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.

Thanks!

## DSP Papers, Articles, Theses, etc

As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help to make the list more...

## Code Snippets Suggestions

Despite being only a couple of months old, the Code Snippet section ( DSPRelated.com/code.php ) already contains tens of snippets, thanks to the contributors who have taken the time to share their code.

But let's not stop here - there is room for several hundreds more snippets before the database can be said to cover a decent portion of the DSP field.

To keep the momentum going, I will do two things:

First, I am modifying the rewards program. Instead of paying the rewards based on page...

## Latest DSP Books

As you may already know, Rick Lyons has just published a new edition of his highly acclaimed book: "Understanding Digital Signal Processing". This book has been getting very high ratings and positive reviews from the DSP community since the publication of the first edition. The 3rd edition seems to contain more than enough new material to justify replacing your old copy.

Also of possible interest to you, a new DSP book by C. Britton Rorabaugh...