Linear Programming (LP)

If we can get our filter or window design problems in the form

\begin{displaymath}\begin{array}[t]{ll} \mathrm{minimize} & f^{T}x\\ \mathrm{subject}\, \mathrm{to} & \begin{array}[t]{l} \mathbf{A}_{eq}x=b_{eq}\\ \mathbf{A}x\le b\end{array}, \end{array}\end{displaymath} (4.60)

where $ x,f\in{\bf R}^N$ , $ b\in{\bf R}^M$ , $ A$ is $ M\times N$ , etc., then we are done.

The linprog function in Matlab Optimization Toolbox solves LP problems. In Octave, one can use glpk instead (from the GNU GLPK library).

Next Section:
LP Formulation of Chebyshev Window Design
Previous Section:
General Rule