An Alternative Form of the Pure Real Tone DFT Bin Value Formula

Cedron Dawg December 17, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving alternative exact formulas for the bin values of a real tone in a DFT. The derivation of the source equations can be found in my earlier blog article titled "DFT Bin Value Formulas for Pure Real Tones"[1]. The new form is slighty more complicated and calculation intensive, but it is more computationally accurate in the vicinity of near integer frequencies. This...


Design IIR Butterworth Filters Using 12 Lines of Code

Neil Robertson December 10, 2017

While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch.  You can do it in 12 lines of Matlab code.  In this article, we’ll create a Matlab function butter_synth.m to design lowpass Butterworth filters of any order.  Here is an example function call for a 5th order filter:


Simplest Calculation of Half-band Filter Coefficients

Neil Robertson November 20, 2017

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4  [1]*.  And it so happens that almost half of the coefficients are zero.  The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2.  Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...


Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

Cedron Dawg November 6, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...


There and Back Again: Time of Flight Ranging between Two Wireless Nodes

Qasim Chaudhari October 23, 20175 comments

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...


Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT

Cedron Dawg October 4, 20179 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the frequency of a real tone in a DFT. This time it is a two bin version. The approach taken is a vector based one similar to the approach used in "Three Bin Exact Frequency Formulas for a Pure Complex Tone in a DFT"[1]. The real valued formula presented in this article actually preceded, and was the basis for the complex three bin...


Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

Cedron Dawg July 20, 2017
Introduction

This is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.

In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

Cedron Dawg June 11, 20174 comments
Introduction

This is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...


Modeling a Continuous-Time System with Matlab

Neil Robertson June 6, 2017

Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω).  However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s).  An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2].  This method provides an exact match to the continuous-time...


How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 20177 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...


A Fixed-Point Introduction by Example

Christopher Felton April 25, 201117 comments
Introduction

The finite-word representation of fractional numbers is known as fixed-point.  Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation.  It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1].  A fixed-point representation of a number consists of integer and fractional components.  The bit length is defined...


A Quadrature Signals Tutorial: Complex, But Not Complicated

Rick Lyons April 12, 201340 comments

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...


Digital Envelope Detection: The Good, the Bad, and the Ugly

Rick Lyons April 3, 20168 comments

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...


Minimum Shift Keying (MSK) - A Tutorial

Qasim Chaudhari January 25, 20174 comments

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...


Sinusoidal Frequency Estimation Based on Time-Domain Samples

Rick Lyons April 20, 201715 comments

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...


The Exponential Nature of the Complex Unit Circle

Cedron Dawg March 10, 20152 comments
Introduction

This is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex...

The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201516 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct


An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 20166 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...

Digital PLL's -- Part 1

Neil Robertson June 7, 20167 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...


How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 20177 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...