Evaluate Noise Performance of Discrete-Time Differentiators
When it comes to noise, all differentiators are not created equal. Figure 1 shows the magnitude response of two differentiators. They both have a useful bandwidth of a little less than π/8 radians (based on maximum magnitude response error of 2%). Suppose we apply a signal with Gaussian noise to each of these differentiators. The sinusoidal signal with noise is shown in the top of Figure 2. Signal frequency is π/12.5 radians. The output of the so-called...
Off-Topic: A Fluidic Model of the Universe
IntroductionThis article is a followup to my previous article "Off Topic: Refraction in a Varying Medium"[1]. Many of the concepts should be quite familiar and of interest to the readership of this site. In the "Speculations" section of my previous article, I mention the goal of finding a similar differential equation as (18) of [1] for light traveling in gravity. It turns out it is the right equation, but a wrong understanding. As a consequence of trying to solve this puzzle, a new...
Learn About Transmission Lines Using a Discrete-Time Model
We don’t often think about signal transmission lines, but we use them every day. Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB). Like it or not, high-speed clock and signal traces on printed-circuit boards are also transmission lines.
While modeling transmission lines is in general a complex undertaking, it is surprisingly simple to model a lossless, uniform line with resistive terminations by using a discrete-time approach. A...
Determination of the transfer function of passive networks with MATLAB Functions
With MATLAB functions, the transfer function of passive networks can be determined relatively easily. The method is explained using the example of a passive low-pass filter of the sixth order, which is shown in Fig.1
Fig.1 Passive low-pass filter of the sixth order
If one tried, as would be logical, to calculate the transfer function starting from the input, it would be quite complicated. On the other hand, if you start from the output, the determination of this function is simple...
A DSP Quiz Question
Here's a DSP Quiz Question that I hope you find mildly interesting
BACKGROUND
Due to the periodic natures an N-point discrete Fourier transform (DFT) sequence and that sequence’s inverse DFT, it is occasionally reasonable to graphically plot either of those sequences as a 3-dimensional (3D) circular plot. For example, Figure 1(a) shows a length-32 x(n) sequence with its 3D circular plot given in Figure 1(b).
HERE'S THE QUIZ QUESTION:
I was reading a paper by an audio DSP engineer where the...The Discrete Fourier Transform and the Need for Window Functions
The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal. A computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate the DFT. But, as many have found to their dismay, the FFT, when used alone, usually does not provide an accurate spectrum. The reason is a phenomenon called spectral leakage.
Spectral leakage can be reduced drastically by using a window function in conjunction...
The 2021 DSP Online Conference
The 2021 DSP Online Conference is just around the corner and this year again, the program is packed with opportunities for DSP engineers to refresh their DSP skills and learn a few new tricks along the way.
By registering for the conference, not only will you have full access to all talks, workshops, and Q&A sessions at this year's event, but you'll also gain instant access to all talks from last year's...
Modeling Anti-Alias Filters
Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a. In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal. We’ll also model aliasing of Gaussian noise. I hope the examples make the textbook explanations of aliasing seem a little more real. Of course, modeling of...
In Search of The Fourth Wave
Last year I participated in the first DSP Related online conference, where I presented a short talk called "In Search of The Fourth Wave". It's based on a small mystery I encountered when I was working on Think DSP. As you might know:
A sawtooth wave contains harmonics at integer multiples of the fundamental frequency, and their amplitudes drop off in proportion to 1/f. A square wave contains only odd multiples of the fundamental, but they also drop off...Sampling bandpass signals
Sampling bandpass signals 1.1 IntroductionIt is known [1], [3] that bandpass signals can be sampled with a sampling frequency which is lower than the sampling frequency according to the sampling theorem.
Fig. 1 shows an example of how the spectrum of a bandpass signal sampled with $f_s$ (Fig. 1a) arises in the baseband with $−f_s / 2 ≤ f < f_s/2$. The bandpass signal is assumed to have a center frequency $f_c = (f_{max} + f_{min})/2$ and bandwidth $\Delta f...
A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters
This blog discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.
Cascaded integrator-comb (CIC) digital filters are computationally-efficient implementations of narrowband lowpass filters, and are often embedded in hardware implementations of decimation, interpolation, and delta-sigma converter filtering.
After describing a few applications of CIC filters, this blog introduces their structure and behavior, presents the frequency-domain...
Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes
When the idea of live-streaming parts of Embedded World came to me, I got so excited that I knew I had to make it happen. I perceived the opportunity as a win-win-win-win.
- win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event,
- win #2 - The organisation behind EW would benefit from the extra exposure
- win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
- win #4 - I would get...
A Quadrature Signals Tutorial: Complex, But Not Complicated
Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...
Use Matlab Function pwelch to Find Power Spectral Density – or Do It Yourself
In my last post, we saw that finding the spectrum of a signal requires several steps beyond computing the discrete Fourier transform (DFT)[1]. These include windowing the signal, taking the magnitude-squared of the DFT, and computing the vector of frequencies. The Matlab function pwelch [2] performs all these steps, and it also has the option to use DFT averaging to compute the so-called Welch power spectral density estimate [3,4].
In this article, I’ll present some...
A Fixed-Point Introduction by Example
IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...
Understanding and Preventing Overflow (I Had Too Much to Add Last Night)
Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.
In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:
for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...Digital Envelope Detection: The Good, the Bad, and the Ugly
Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.
Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...
Sum of Two Equal-Frequency Sinusoids
Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:
Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...
Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference
Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.
Chances are you also already know that you have until the end of the month of February to register for free.
And chances are that you are one of the more than 3000 pro-active engineers who have already registered.
But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...
Minimum Shift Keying (MSK) - A Tutorial
Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.
MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...
A Fixed-Point Introduction by Example
IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...
A Quadrature Signals Tutorial: Complex, But Not Complicated
Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...
Adventures in Signal Processing with Python
Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...
Understanding and Preventing Overflow (I Had Too Much to Add Last Night)
Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.
In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:
for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...
Sum of Two Equal-Frequency Sinusoids
Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:
Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...
Understanding the 'Phasing Method' of Single Sideband Demodulation
There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:
- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.
Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...
An Interesting Fourier Transform - 1/f Noise
Power law functions are common in science and engineering. A surprising property is that the Fourier transform of a power law is also a power law. But this is only the start- there are many interesting features that soon become apparent. This may even be the key to solving an 80-year mystery in physics.
It starts with the following Fourier transform:
The general form is tα ↔ ω-(α+1), where α is a constant. For example, t2 ↔...
Minimum Shift Keying (MSK) - A Tutorial
Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.
MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...
Digital Envelope Detection: The Good, the Bad, and the Ugly
Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.
Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...
The 2021 DSP Online Conference
The 2021 DSP Online Conference is just around the corner and this year again, the program is packed with opportunities for DSP engineers to refresh their DSP skills and learn a few new tricks along the way.
By registering for the conference, not only will you have full access to all talks, workshops, and Q&A sessions at this year's event, but you'll also gain instant access to all talks from last year's...
The DSP Online Conference - Right Around the Corner!
It is Sunday night as I write this blog post with a few days to go before the virtual doors of the very first DSP Online Conference open..
It all started with a post in the DSPRelated forum about three months ago. We had just had a blast running the 2020 Embedded Online Conference and we thought it could be fun to organize a smaller event dedicated to the DSP community. So my goal with the post in the forum was to see if...
Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference
Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.
Chances are you also already know that you have until the end of the month of February to register for free.
And chances are that you are one of the more than 3000 pro-active engineers who have already registered.
But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...
Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date
Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...
Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes
When the idea of live-streaming parts of Embedded World came to me, I got so excited that I knew I had to make it happen. I perceived the opportunity as a win-win-win-win.
- win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event,
- win #2 - The organisation behind EW would benefit from the extra exposure
- win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
- win #4 - I would get...
Spread the Word and Run a Chance to Win a Bundle of Goodies from Embedded World
Do you have a Twitter and/or Linkedin account?
If you do, please consider paying close attention for the next few days to the EmbeddedRelated Twitter account and to my personal Linkedin account (feel free to connect). This is where I will be posting lots of updates about how the EmbeddedRelated.tv live streaming experience is going at Embedded World.
The most successful this live broadcasting experience will be, the better the chances that I will be able to do it...
Launch of EmbeddedRelated.tv
With the upcoming Embedded Word just around the corner, I am very excited to launch the EmbeddedRelated.tv platform.
This is where you will find the schedule for all the live broadcasts that I will be doing from Embedded World next week. Please note that the schedule will be evolving constantly, even during the show, so I suggest your refresh the page often. For instance, I am still unsure if I will be able to do the 'opening of the doors' broadcast as...
Live Streaming from Embedded World!
For those of you who won't be attending Embedded World this year, I will try to be your eyes and ears by video streaming live from the show floor.
I am not talking improvised streaming from a phone, but real, high quality HD streaming with a high-end camera and a device that will bond three internet connections (one wifi and two cellular) to ensure a steady, and hopefully reliable, stream. All this to hopefully give those of you who cannot be there in person a virtual...