// Random number generator that sounds pleasant in audio algorithms.
// The argument and return value is a 30-bit (positive nonzero) integer.
// This is Duttaro's 30-bit pseudorandom number generator, p.124 J.AES, vol 50 no 3 March 2002;
// I found this 30-bit pseudorandom number generator sounds far superior to the 31-bit
// pseudorandom number generator presented in the same article.
// To make result a signed fixed-point value, do not shift left into the sign bit;
// instead, subtract 0x20000000 then multiply by a scale factor.
#define NextRand(rr) (((((rr >> 16) ^ (rr >> 15) ^ (rr >> 1) ^ rr) & 1) << 29) | (rr >> 1))

// Fast power-of-10 approximation, with RMS error of 1.77%.
// This approximation developed by Nicol Schraudolph (Neural Computation vol 11, 1999).
// Adapted for 32-bit floats by Lippold Haken of Haken Audio, April 2010.
// Set float variable's bits to integer expression.
// f=b^f is approximated by
// (int)f = f*0x00800000*log(b)/log(2) + 0x3F800000-60801*8
// f=10^f is approximated by
// (int)f = f*27866352.6 + 1064866808.0
inline void Pow10(float *f) { *(int *)f = *f * 27866352.6 + 1064866808.0; };

// Fast InvSqrt approxumation, with an error of less than 4%.
// This approximation is attributed to Greg Walsh.
inline void InvSqrt(float *x) { *(int *)x = 0x5f3759df - (*(int *)x >> 1); }
inline float SqrtSqrt(float x) { InvSqrt(&x); InvSqrt(&x); return x; }

// Random number generator that sounds pleasant in audio algorithms.
// The argument and return value is a 30-bit (positive nonzero) integer.
// This is Duttaro's 30-bit pseudorandom number generator, p.124 J.AES, vol 50 no 3 March 2002;
// I found this 30-bit pseudorandom number generator sounds far superior to the 31-bit
// pseudorandom number generator presented in the same article.
// To make result a signed fixed-point value, do not shift left into the sign bit;
// instead, subtract 0x20000000 then multiply by a scale factor.
#define NextRand(rr) (((((rr >> 16) ^ (rr >> 15) ^ (rr >> 1) ^ rr) & 1) << 29) | (rr >> 1))

// Fast InvSqrt approxumation, with an error of less than 4%.
// This approximation is attributed to Greg Walsh.
inline void InvSqrt(float *x) { *(int *)x = 0x5f3759df - (*(int *)x >> 1); }
inline float SqrtSqrt(float x) { InvSqrt(&x); InvSqrt(&x); return x; }

// Fast power-of-10 approximation, with RMS error of 1.77%.
// This approximation developed by Nicol Schraudolph (Neural Computation vol 11, 1999).
// Adapted for 32-bit floats by Lippold Haken of Haken Audio, April 2010.
// Set float variable's bits to integer expression.
// f=b^f is approximated by
// (int)f = f*0x00800000*log(b)/log(2) + 0x3F800000-60801*8
// f=10^f is approximated by
// (int)f = f*27866352.6 + 1064866808.0
inline void Pow10(float *f) { *(int *)f = *f * 27866352.6 + 1064866808.0; };