Code Snippets Submitted by wingnut
Adaptive IIR filter using fixed point integer arithmetic
typedef signed long s32;
#define ABS(x) ((x) < 0 ? -(x) : (x))
#define CLAMP(x,min,max) {if ((x) <= (min)) (x) = (min); else if ((x) >= (max)) (x) = (max);}
#define KLPF_MAX_ADAPT 232L
#define KLPF_MIN_ADAPT 0L
#define KLPF_DEFAULT_ADAPT 160L
#define ACCEL_MIN_ADAPT 5
#define ACCEL_MAX_ADAPT 15
s32 gnKLpf = KLPF_DEFAULT_ADAPT; // IIR filter coefficient, 0 to 255
s32 gnKLpfMax = KLPF_MAX_ADAPT;
s32 gnAccel = 0; // rate of change of climbrate
s32 gnCpsx256 = 0; // climbrate in centimeters per second, with 8 bit fractional precision
s32 gnCps; // climbrate in centimeters per second
// IIR low pass filter using fixed point integer arithmetic. 8bits of fractional precision for IIR coefficient K.
// So the actual floating point coefficient is k = K/256, 0.0 <= k < 1.0. The filter computes
// climbRateFiltered = climbRateFiltered*k + newClimbRate*(1.0 - k). So K values close to 256 will result in
// heavy damping, K values close to 0 will result in almost no damping. The IIR low pass filtered output gnCps
// is the rounded up integer value, the 8bit fraction precision value gnCpsx256 is a global variable, so is
// maintained between calls to the filter. No integer divides required.
void sns_LPFClimbRate(void) {
s32 tmp;
tmp = gnCpsx256*gnKLpf + (gnCps<<8)*(256L-gnKLpf);
gnCpsx256 = (tmp >= 0 ? ((tmp + 128L)>>8) : ((tmp - 128L)>>8));
gnCps = (gnCpsx256>>8);
}
// Adapt the IIR filter coeffient to the rate of change. If samples are not changing much, increase the damping.
// If the samples are changing by a large amount, reduce the damping. This is done to reduce the response delay to a
// a step change, while still being able to heavily damp out jitter in steady state noisy samples.
// This function basically linearly interpolates KLpf between KLPF_MAX and KLPF_MIN based on the acceleration.
// Values of acceleration outside experimentally determined limits are clamped to the limits, depends on the
// application. A variable is used for KLpfMax to allow user to adjust the maximum allowed damping.
s32 sns_AdaptKLpf(void) {
s32 klpf,nAccel;
nAccel = ABS(gnAccel);
CLAMP(nAccel, ACCEL_MIN_ADAPT, ACCEL_MAX_ADAPT);
klpf = gnKLpfMax + ((KLPF_MIN_ADAPT-gnKLpfMax)*(nAccel - ACCEL_MIN_ADAPT))/(ACCEL_MAX_ADAPT-ACCEL_MIN_ADAPT);
CLAMP(klpf, KLPF_MIN_ADAPT, KLPF_MAX_ADAPT);
return klpf;
}
// usage :
// For each new data sample that arrives
// 1. calculate new unfiltered climbrate nCps from sample data buffer
// 2. gnAccel = (nCps - gnCps);
// 3. (optionally low pass filter gnAccel using same type of IIR filter, if required)
// 4. gnCps = nCps;
// 5. gnKLpf = sns_AdaptKLpf();
// 6. sns_LPFClimbRate();
Adaptive IIR filter using fixed point integer arithmetic
typedef signed long s32;
#define ABS(x) ((x) < 0 ? -(x) : (x))
#define CLAMP(x,min,max) {if ((x) <= (min)) (x) = (min); else if ((x) >= (max)) (x) = (max);}
#define KLPF_MAX_ADAPT 232L
#define KLPF_MIN_ADAPT 0L
#define KLPF_DEFAULT_ADAPT 160L
#define ACCEL_MIN_ADAPT 5
#define ACCEL_MAX_ADAPT 15
s32 gnKLpf = KLPF_DEFAULT_ADAPT; // IIR filter coefficient, 0 to 255
s32 gnKLpfMax = KLPF_MAX_ADAPT;
s32 gnAccel = 0; // rate of change of climbrate
s32 gnCpsx256 = 0; // climbrate in centimeters per second, with 8 bit fractional precision
s32 gnCps; // climbrate in centimeters per second
// IIR low pass filter using fixed point integer arithmetic. 8bits of fractional precision for IIR coefficient K.
// So the actual floating point coefficient is k = K/256, 0.0 <= k < 1.0. The filter computes
// climbRateFiltered = climbRateFiltered*k + newClimbRate*(1.0 - k). So K values close to 256 will result in
// heavy damping, K values close to 0 will result in almost no damping. The IIR low pass filtered output gnCps
// is the rounded up integer value, the 8bit fraction precision value gnCpsx256 is a global variable, so is
// maintained between calls to the filter. No integer divides required.
void sns_LPFClimbRate(void) {
s32 tmp;
tmp = gnCpsx256*gnKLpf + (gnCps<<8)*(256L-gnKLpf);
gnCpsx256 = (tmp >= 0 ? ((tmp + 128L)>>8) : ((tmp - 128L)>>8));
gnCps = (gnCpsx256>>8);
}
// Adapt the IIR filter coeffient to the rate of change. If samples are not changing much, increase the damping.
// If the samples are changing by a large amount, reduce the damping. This is done to reduce the response delay to a
// a step change, while still being able to heavily damp out jitter in steady state noisy samples.
// This function basically linearly interpolates KLpf between KLPF_MAX and KLPF_MIN based on the acceleration.
// Values of acceleration outside experimentally determined limits are clamped to the limits, depends on the
// application. A variable is used for KLpfMax to allow user to adjust the maximum allowed damping.
s32 sns_AdaptKLpf(void) {
s32 klpf,nAccel;
nAccel = ABS(gnAccel);
CLAMP(nAccel, ACCEL_MIN_ADAPT, ACCEL_MAX_ADAPT);
klpf = gnKLpfMax + ((KLPF_MIN_ADAPT-gnKLpfMax)*(nAccel - ACCEL_MIN_ADAPT))/(ACCEL_MAX_ADAPT-ACCEL_MIN_ADAPT);
CLAMP(klpf, KLPF_MIN_ADAPT, KLPF_MAX_ADAPT);
return klpf;
}
// usage :
// For each new data sample that arrives
// 1. calculate new unfiltered climbrate nCps from sample data buffer
// 2. gnAccel = (nCps - gnCps);
// 3. (optionally low pass filter gnAccel using same type of IIR filter, if required)
// 4. gnCps = nCps;
// 5. gnKLpf = sns_AdaptKLpf();
// 6. sns_LPFClimbRate();