Dealing with Repeated Poles Analytically
A pole of multiplicity has
residues associated with it. For example,
and the three residues associated with the pole
![$ z=1/2$](http://www.dsprelated.com/josimages_new/filters/img759.png)
Let denote the
th residue associated with the pole
,
.
Successively differentiating
times with
respect to
and setting
isolates the residue
:
![\begin{eqnarray*}
r_{i1} &=& \left.(1-p_iz^{-1})^{m_i}H(z)\right\vert _{z=p_i}\\...
...ac{d^3}{d(z^{-1})^3} (1-p_iz^{-1})^{m_i}H(z)\right\vert _{z=p_i}
\end{eqnarray*}](http://www.dsprelated.com/josimages_new/filters/img765.png)
or
![$\displaystyle \zbox {r_{ik} = \left.\frac{1}{(k-1)!(-p_i)^{k-1}}\frac{d^{k-1}}{d(z^{-1})^{k-1}} (1-p_iz^{-1})^{m_i}H(z)\right\vert _{z=p_i}}
$](http://www.dsprelated.com/josimages_new/filters/img766.png)
Next Section:
Example
Previous Section:
Example: The General Biquad PFE