#### Inverse DFT and the DFT Filter Bank Sum

The Length
*inverse* DFT is given by [264]

(10.16) |

This suggests that the DFT Filter Bank can be inverted by simply

*remodulating*the baseband filter-bank signals ,

*summing*over , and dividing by for proper normalization. That is, we are led to conjecture that

(10.17) |

This is in fact true, as we will later see. (It is straightforward to show as an exercise.)

**Next Section:**

Specific Windows

**Previous Section:**

DFT Filter Bank