## Polar Coding Notes: A Simple Proof

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...

## Polar Coding Notes: Channel Combining and Channel Splitting

Channel Combining

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...

## Half-band filter on Xilinx FPGA

1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.

Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)

2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter

3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...

## Half-band filter on Xilinx FPGA

1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.

Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)

2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter

3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...

## Polar Coding Notes: A Simple Proof

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...

## Polar Coding Notes: Channel Combining and Channel Splitting

Channel Combining

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...

## Half-band filter on Xilinx FPGA

1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.

Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)

2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter

3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...

## Polar Coding Notes: Channel Combining and Channel Splitting

Channel Combining

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...

## Polar Coding Notes: A Simple Proof

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...