Take Control of Noise with Spectral Averaging

Sam Shearman April 20, 20181 comment

Most engineers have seen the moment-to-moment fluctuations that are common with instantaneous measurements of a supposedly steady spectrum. You can see these fluctuations in magnitude and phase for each frequency bin of your spectrogram. Although major variations are certainly reason for concern, recall that we don’t live in an ideal, noise-free world. After verifying the integrity of your measurement setup by checking connections, sensors, wiring, and the like, you might conclude that the...


How precise is my measurement?

Sam Shearman March 28, 20181 comment

Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.

An accurate, precise...

Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed

Steve Maslen March 21, 2018

This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.

Additional design notes...

Phase and Amplitude Calculation for a Pure Complex Tone in a DFT using Multiple Bins

Cedron Dawg March 14, 2018
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from several DFT bin values and knowing the frequency. This article is functionally an extension of my prior article "Phase and Amplitude Calculation for a Pure Complex Tone in a DFT"[1] which used only one bin for a complex tone, but it is actually much more similar to my approach for real...


Phase and Amplitude Calculation for a Pure Complex Tone in a DFT

Cedron Dawg January 6, 2018
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from a DFT bin value and knowing the frequency. This is a much simpler problem to solve than the corresponding case for a pure real tone which I covered in an earlier blog article[1]. In the noiseless single tone case, these equations will be exact. In the presence of noise or other tones...


Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators

Steve Maslen January 5, 20187 comments
This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality. 

Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An...


An Efficient Linear Interpolation Scheme

Rick Lyons December 27, 201723 comments

This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.

Background: Linear Interpolation

Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x. 

       Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...


An Alternative Form of the Pure Real Tone DFT Bin Value Formula

Cedron Dawg December 17, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving alternative exact formulas for the bin values of a real tone in a DFT. The derivation of the source equations can be found in my earlier blog article titled "DFT Bin Value Formulas for Pure Real Tones"[1]. The new form is slighty more complicated and calculation intensive, but it is more computationally accurate in the vicinity of near integer frequencies. This...


Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.

Steve Maslen December 3, 20177 comments

This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.

  • Part 6: Self-Calibration, Measurements and Signalling (this part)
  • Part 5:

Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

Cedron Dawg November 6, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...


A Fixed-Point Introduction by Example

Christopher Felton April 25, 201118 comments
Introduction

The finite-word representation of fractional numbers is known as fixed-point.  Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation.  It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1].  A fixed-point representation of a number consists of integer and fractional components.  The bit length is defined...


Understanding the 'Phasing Method' of Single Sideband Demodulation

Rick Lyons August 8, 201217 comments

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

  • synchronous detection,
  • phasing method,
  • Weaver method, and
  • filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...


A Quadrature Signals Tutorial: Complex, But Not Complicated

Rick Lyons April 12, 201349 comments

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...


Python scipy.signal IIR Filtering: An Example

Christopher Felton May 19, 2013
Introduction

In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ).  In this post I am going to conclude the IIR filter design review with an example.

Previous posts:


Python scipy.signal IIR Filter Design

Christopher Felton May 14, 20124 comments
Introduction

The following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package.  This post, mainly, covers how to use the scipy.signal package and is not a thorough introduction to IIR filter design.  For complete coverage of IIR filter design and structure see one of the references.

Filter Specification

Before providing some examples lets review the specifications for a filter design.  A filter...


Delay estimation by FFT

Markus Nentwig September 22, 200745 comments
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippet

This article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.

Introduction

There are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...


Sum of Two Equal-Frequency Sinusoids

Rick Lyons September 4, 20142 comments

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...


Pulse Shaping in Single-Carrier Communication Systems

Eric Jacobsen April 10, 200833 comments

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...


Polyphase filter / Farrows interpolation

Markus Nentwig September 18, 200713 comments

Hello,

this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.

A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf

The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.

The picture below shows samples (black) representing...


Frequency Dependence in Free Space Propagation

Eric Jacobsen May 14, 20088 comments

Introduction

It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:

Pr = Pt Gt Gr ( λ / 4πd )2 (1)

where the...