## Dealing With Fixed Point Fractions

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...

## Constrained Integer Behavior

Integer arithmetic is ubiquitous in digital hardware implementations, it's prolific in the control and data-paths. When using fixed width (constrained) integers, overflow and underflow is business as usual.

Building with IntegersThe subtitle of this post mentions a wheel - before I get to the wheel I want to look at an example. The recursive-windowed-averager (rwa, a.k.a moving average)...

## Spline interpolation

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog

IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...

## Signed serial-/parallel multiplication

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

Summary- A detailed discussion of bit-level trickstery in signed-signed multiplication
- Algorithm based on Wikipedia example
- Includes a Verilog implementation with parametrized bit width

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...

## Python scipy.signal IIR Filtering: An Example

In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ). In this post I am going to conclude the IIR filter design review with an example.

Previous posts:

## A Fixed-Point Introduction by Example

IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...

## DSP Algorithm Implementation: A Comprehensive Approach

As DSP engineers, ultimately we are required to design and implement specific DSP algorithms. The first step is to make a choice on which algorithm to use, e.g. for filtering should we use FIR or IIR. Then we can go a little bit deeper into the, high level, implementation details, e.g. use the symmetry in FIR filter to reduce complexity. When the algorithm is clear, the first step is to test and simulate the algorithm in a high level language like MATLAB.

After we reach confidence in...

## Half-band filter on Xilinx FPGA

1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.

Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)

2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter

3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...

## Instantaneous Frequency Measurement

I would like to talk about the oft used method of measuring the carrier frequency in the world of Signal Collection and Characterization world. It is an elegant technique because of its simplicity. But, of course, with simplicity, there come drawbacks (sometimes...especially with this one!).

In the world of Radar detection and characterization, one of the key characteristics of interest is the carrier frequency of the signal. If the radar is pulsed, you will have a very wide bandwidth, a...

## A Fixed-Point Introduction by Example

IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...

## Python scipy.signal IIR Filtering: An Example

In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ). In this post I am going to conclude the IIR filter design review with an example.

Previous posts:

## Spline interpolation

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog

IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...

## Instantaneous Frequency Measurement

I would like to talk about the oft used method of measuring the carrier frequency in the world of Signal Collection and Characterization world. It is an elegant technique because of its simplicity. But, of course, with simplicity, there come drawbacks (sometimes...especially with this one!).

In the world of Radar detection and characterization, one of the key characteristics of interest is the carrier frequency of the signal. If the radar is pulsed, you will have a very wide bandwidth, a...

## Dealing With Fixed Point Fractions

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...

## Signed serial-/parallel multiplication

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

Summary- A detailed discussion of bit-level trickstery in signed-signed multiplication
- Algorithm based on Wikipedia example
- Includes a Verilog implementation with parametrized bit width

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...

## Half-band filter on Xilinx FPGA

1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.

Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)

2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter

3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...

## DSP Algorithm Implementation: A Comprehensive Approach

As DSP engineers, ultimately we are required to design and implement specific DSP algorithms. The first step is to make a choice on which algorithm to use, e.g. for filtering should we use FIR or IIR. Then we can go a little bit deeper into the, high level, implementation details, e.g. use the symmetry in FIR filter to reduce complexity. When the algorithm is clear, the first step is to test and simulate the algorithm in a high level language like MATLAB.

After we reach confidence in...

## Constrained Integer Behavior

Integer arithmetic is ubiquitous in digital hardware implementations, it's prolific in the control and data-paths. When using fixed width (constrained) integers, overflow and underflow is business as usual.

Building with IntegersThe subtitle of this post mentions a wheel - before I get to the wheel I want to look at an example. The recursive-windowed-averager (rwa, a.k.a moving average)...

## A Fixed-Point Introduction by Example

IntroductionThe finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1]. A fixed-point representation of a number consists of integer and fractional components. The bit length is defined...

## Python scipy.signal IIR Filtering: An Example

In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ). In this post I am going to conclude the IIR filter design review with an example.

Previous posts:

## Instantaneous Frequency Measurement

I would like to talk about the oft used method of measuring the carrier frequency in the world of Signal Collection and Characterization world. It is an elegant technique because of its simplicity. But, of course, with simplicity, there come drawbacks (sometimes...especially with this one!).

In the world of Radar detection and characterization, one of the key characteristics of interest is the carrier frequency of the signal. If the radar is pulsed, you will have a very wide bandwidth, a...

## Signed serial-/parallel multiplication

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

Summary- A detailed discussion of bit-level trickstery in signed-signed multiplication
- Algorithm based on Wikipedia example
- Includes a Verilog implementation with parametrized bit width

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...

## Spline interpolation

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog

IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...

## Half-band filter on Xilinx FPGA

1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.

Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)

2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter

3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...

## Dealing With Fixed Point Fractions

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...

## Constrained Integer Behavior

Integer arithmetic is ubiquitous in digital hardware implementations, it's prolific in the control and data-paths. When using fixed width (constrained) integers, overflow and underflow is business as usual.

Building with IntegersThe subtitle of this post mentions a wheel - before I get to the wheel I want to look at an example. The recursive-windowed-averager (rwa, a.k.a moving average)...

## DSP Algorithm Implementation: A Comprehensive Approach

As DSP engineers, ultimately we are required to design and implement specific DSP algorithms. The first step is to make a choice on which algorithm to use, e.g. for filtering should we use FIR or IIR. Then we can go a little bit deeper into the, high level, implementation details, e.g. use the symmetry in FIR filter to reduce complexity. When the algorithm is clear, the first step is to test and simulate the algorithm in a high level language like MATLAB.

After we reach confidence in...