### DC Blocker Frequency Response

Figure B.11 shows the frequency response of the dc blocker for several values of . The same plots are given over a log-frequency scale in Fig.B.12. The corresponding pole-zero diagrams are shown in Fig.B.13. As approaches , the notch at dc gets narrower and narrower. While this may seem ideal, there is a drawback, as shown in Fig.B.14 for the case of : The impulse response duration increases as . While the ``tail'' of the impulse response lengthens as approaches 1, its initial magnitude decreases. At the limit, , the pole and zero cancel at all frequencies, the impulse response becomes an impulse, and the notch disappears.

Note that the amplitude response in Fig.B.11a and Fig.B.12a exceeds 1 at half the sampling rate. This maximum gain is given by . In applications for which the gain must be bounded by 1 at all frequencies, the dc blocker may be scaled by the inverse of this maximum gain to yield

**Next Section:**

DC Blocker Software Implementations

**Previous Section:**

Allpass Filter Design