Conjugation and Reversal


Theorem: For any $ x\in{\bf C}^N$,

$\displaystyle \zbox {\overline{x} \;\longleftrightarrow\;\hbox{\sc Flip}(\overline{X}).}
$


Proof:

\begin{eqnarray*}
\hbox{\sc DFT}_k(\overline{x})
&\isdef & \sum_{n=0}^{N-1}\ov...
...n) e^{-j 2\pi n(-k)/N}}
\isdef \hbox{\sc Flip}_k(\overline{X})
\end{eqnarray*}


Theorem: For any $ x\in{\bf C}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(\overline{x}) \;\longleftrightarrow\;\overline{X}.}
$


Proof: Making the change of summation variable $ m\isdeftext N-n$, we get

\begin{eqnarray*}
\hbox{\sc DFT}_k(\hbox{\sc Flip}(\overline{x}))
&\isdef & \s...
...sum_{m=0}^{N-1}x(m) e^{-j 2\pi m k/N}}
\isdef \overline{X(k)}.
\end{eqnarray*}


Theorem: For any $ x\in{\bf C}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(x) \;\longleftrightarrow\;\hbox{\sc Flip}(X).}
$


Proof:

\begin{eqnarray*}
\hbox{\sc DFT}_k[\hbox{\sc Flip}(x)] &\isdef & \sum_{n=0}^{N-1...
...-1}x(m) e^{j 2\pi mk/N} \isdef X(-k) \isdef \hbox{\sc Flip}_k(X)
\end{eqnarray*}

Corollary: For any $ x\in{\bf R}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(x) \;\longleftrightarrow\;\overline{X}}$   $\displaystyle \mbox{($x$\ real).}$


Proof: Picking up the previous proof at the third formula, remembering that $ x$ is real,

$\displaystyle \sum_{m=0}^{N-1}x(m) e^{j 2\pi mk/N}
= \overline{\sum_{m=0}^{N-1}...
.../N}}
= \overline{\sum_{m=0}^{N-1}x(m) e^{-j 2\pi mk/N}}
\isdef \overline{X(k)}
$

when $ x(m)$ is real.

Thus, conjugation in the frequency domain corresponds to reversal in the time domain. Another way to say it is that negating spectral phase flips the signal around backwards in time.

Corollary: For any $ x\in{\bf R}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(X) = \overline{X}}$   $\displaystyle \mbox{($x$\ real).}$


Proof: This follows from the previous two cases.


Definition: The property $ X(-k)=\overline{X(k)}$ is called Hermitian symmetry or ``conjugate symmetry.'' If $ X(-k)=-\overline{X(k)}$, it may be called skew-Hermitian.

Another way to state the preceding corollary is

$\displaystyle \zbox {x\in{\bf R}^N\;\longleftrightarrow\;X\;\mbox{is Hermitian}.}
$


Next Section:
Symmetry
Previous Section:
Linearity