Matrices
A matrix is defined as a rectangular array of numbers, e.g.,
![$\displaystyle \mathbf{A}= \left[\begin{array}{cc} a & b \\ [2pt] c & d \end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2046.png)





![$\displaystyle \left[\begin{array}{cc} a & b \\ c & d \\ e & f \end{array}\right].
$](http://www.dsprelated.com/josimages_new/mdft/img2050.png)


![$ \mathbf{A}[i,j]$](http://www.dsprelated.com/josimages_new/mdft/img2053.png)


![$ \mathbf{A}[1,2]=b$](http://www.dsprelated.com/josimages_new/mdft/img2056.png)




The transpose of a real matrix
is denoted by
and is defined by
![$\displaystyle \mathbf{A}^{\!\hbox{\tiny T}}[i,j] \isdef \mathbf{A}[j,i].
$](http://www.dsprelated.com/josimages_new/mdft/img2062.png)



![$\displaystyle \left[\begin{array}{cc} a & b \\ c & d \\ e & f \end{array}\right...
...\tiny T}}
=\left[\begin{array}{ccc} a & c & e \\ b & d & f \end{array}\right].
$](http://www.dsprelated.com/josimages_new/mdft/img2064.png)
A complex matrix
, is simply a
matrix containing complex numbers. The
transpose of a complex matrix is normally defined to
include conjugation. The conjugating transpose operation is called the
Hermitian transpose. To avoid confusion, in this tutorial,
and the word ``transpose'' will always denote transposition
without conjugation, while conjugating transposition will be
denoted by
and be called the ``Hermitian transpose'' or the
``conjugate transpose.'' Thus,
![$\displaystyle A^{\ast }[i,j] \isdef \overline{\mathbf{A}[j,i]}.
$](http://www.dsprelated.com/josimages_new/mdft/img2067.png)
Matrix Multiplication
Let
be a general
matrix and let
denote a
general
matrix. Denote the matrix product by
. Then matrix multiplication is carried out by computing
the inner product of every row of
with every column of
. Let the
th row of
be denoted by
,
, and the
th column of
by
,
. Then the matrix product
is
defined as
![$\displaystyle \mathbf{C}= \mathbf{A}^{\!\hbox{\tiny T}}\, \mathbf{B}= \left[\be...
...cdots & <\underline{a}^{\hbox{\tiny T}}_M,\underline{b}_N>
\end{array}\right].
$](http://www.dsprelated.com/josimages_new/mdft/img2081.png)
Examples:
![$\displaystyle \left[\begin{array}{cc} a & b \\ c & d \\ e & f \end{array}\right...
...gamma & c\beta+d\delta \\
e\alpha+f\gamma & e\beta+f\delta
\end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2084.png)
![$\displaystyle \left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{ar...
...ma a + \delta b & \gamma c + \delta d & \gamma e + \delta f
\end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2085.png)
![$\displaystyle \left[\begin{array}{c} \alpha \\ \beta \end{array}\right]
\cdot
\...
...pha a & \alpha b & \alpha c \\
\beta a & \beta b & \beta c
\end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2086.png)
![$\displaystyle \left[\begin{array}{ccc} a & b & c \end{array}\right]
\cdot
\left...
...} \alpha \\ \beta \\ \gamma \end{array}\right]
= a \alpha + b \beta + c \gamma
$](http://www.dsprelated.com/josimages_new/mdft/img2087.png)
An matrix
can be multiplied on the right by an
matrix, where
is any positive integer. An
matrix
can be multiplied on the left by a
matrix, where
is any positive integer. Thus, the number of columns in
the matrix on the left must equal the number of rows in the matrix on the
right.
Matrix multiplication is non-commutative, in general. That is,
normally
even when both products are defined (such as when the
matrices are square.)
The transpose of a matrix product is the product of the transposes in reverse order:

The identity matrix is denoted by
and is defined as
![$\displaystyle \mathbf{I}\isdef \left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots &...
...dots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2091.png)









As a special case, a matrix
times a vector
produces a new vector
which consists of the inner product of every row of
with
![$\displaystyle \mathbf{A}^{\!\hbox{\tiny T}}\underline{x}= \left[\begin{array}{c...
...vdots \\
<\underline{a}^{\hbox{\tiny T}}_M,\underline{x}>
\end{array}\right].
$](http://www.dsprelated.com/josimages_new/mdft/img2097.png)




![$ \mathbf{A}^{\!\hbox{\tiny T}}[i,j] = \mathbf{A}^{\!\hbox{\tiny T}}[i-j]$](http://www.dsprelated.com/josimages_new/mdft/img2098.png)
As a further special case, a row vector on the left may be multiplied by a column vector on the right to form a single inner product:

Solving Linear Equations Using Matrices
Consider the linear system of equations

in matrix form:
![$\displaystyle \left[\begin{array}{cc} a & b \\ [2pt] d & e \end{array}\right] \...
..._2 \end{array}\right] = \left[\begin{array}{c} c \\ [2pt] f \end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2101.png)




![$\displaystyle \underline{x}= \mathbf{A}^{-1}\underline{b}= \left[\begin{array}{...
...\end{array}\right]^{-1}\left[\begin{array}{c} c \\ [2pt] f \end{array}\right].
$](http://www.dsprelated.com/josimages_new/mdft/img2104.png)
![$\displaystyle \left[\begin{array}{cc} a & b \\ [2pt] d & e \end{array}\right]^{...
...rac{1}{ae-bd}\left[\begin{array}{cc} e & -b \\ [2pt] -d & a \end{array}\right]
$](http://www.dsprelated.com/josimages_new/mdft/img2105.png)


Next Section:
Matlab/Octave Examples
Previous Section:
Number Systems for Digital Audio