Projection
The orthogonal projection (or simply ``projection'') of
onto
is defined by
![$\displaystyle \zbox {{\bf P}_{x}(y) \isdef \frac{\left<y,x\right>}{\Vert x\Vert^2} x.}
$](http://www.dsprelated.com/josimages_new/mdft/img876.png)
![$ \left<y,x\right>/\Vert x\Vert^2$](http://www.dsprelated.com/josimages_new/mdft/img877.png)
![$ y$](http://www.dsprelated.com/josimages_new/mdft/img26.png)
![$ x$](http://www.dsprelated.com/josimages_new/mdft/img25.png)
![$ y$](http://www.dsprelated.com/josimages_new/mdft/img26.png)
![$ x$](http://www.dsprelated.com/josimages_new/mdft/img25.png)
Motivation: The basic idea of orthogonal projection of onto
is to ``drop a perpendicular'' from
onto
to define a new
vector along
which we call the ``projection'' of
onto
.
This is illustrated for
in Fig.5.9 for
and
, in which case
![$\displaystyle {\bf P}_{x}(y) \isdef \frac{\left<y,x\right>}{\Vert x\Vert^2} x
...
...{1})}{4^2+1^2} x
= \frac{11}{17} x= \left[\frac{44}{17},\frac{11}{17}\right].
$](http://www.dsprelated.com/josimages_new/mdft/img880.png)
Derivation: (1) Since any projection onto must lie along the
line collinear with
, write the projection as
. (2) Since by definition the projection error
is orthogonal to
, we must have
![\begin{eqnarray*}
(y-\alpha x) & \perp & x\\
\;\Leftrightarrow\;\left<y-\alpha...
...}{\left<x,x\right>}
= \frac{\left<y,x\right>}{\Vert x\Vert^2}.
\end{eqnarray*}](http://www.dsprelated.com/josimages_new/mdft/img884.png)
Thus,
![$\displaystyle {\bf P}_{x}(y) = \frac{\left<y,x\right>}{\Vert x\Vert^2} x.
$](http://www.dsprelated.com/josimages_new/mdft/img885.png)
See §I.3.3 for illustration of orthogonal projection in matlab.
Next Section:
Changing Coordinates
Previous Section:
The Pythagorean Theorem in N-Space