## e^(j theta)

We've now defined for any positive real number and any complex number . Setting and gives us the special case we need for Euler's identity. Since is its own derivative, the Taylor series expansion for is one of the simplest imaginable infinite series:

Comparing the Maclaurin expansion for with that of and proves Euler's identity. Recall from introductory calculus that

so that

Plugging into the general Maclaurin series gives

Separating the Maclaurin expansion for into its even and odd terms (real and imaginary parts) gives

thus proving Euler's identity.

**Next Section:**

Back to Mth Roots

**Previous Section:**

Back to e