Arctangent Approximations for
This subsection provides further details on the arctangent approximation for the optimal allpass coefficient as a function of sampling rate. Compared with other spline or polynomial approximations, the arctangent form
was found to provide a more parsimonious expression at a given accuracy level. The idea was that the arctangent function provided a mapping from the interval








![$\displaystyle f_s= {1\over \gamma_2}\tan\left[{\pi\over2} \left(\frac{\rho _{\mathbf\gamma}- \gamma_3}{\gamma_1}\right)^2\right].
$](http://www.dsprelated.com/josimages_new/sasp2/img2945.png)
To obtain the optimal arctangent form
, the expression for
in (E.3.5) was optimized with respect to its free
parameters
to match the optimal
Chebyshev allpass coefficient as a function of sampling rate:
![$\displaystyle \rho ^*_{\mathbf\gamma}(f_s) \isdef \hbox{Arg}\left[\min_{{\mathbf\gamma}}\left\{\left\Vert\,\rho ^*_\infty(f_s) - \rho _{\mathbf\gamma}(f_s)\,\right\Vert _\infty\right\}\right].
$](http://www.dsprelated.com/josimages_new/sasp2/img2947.png)
For a Bark warping, the optimized arctangent formula was found to be
where


When the optimality criterion is chosen to minimize relative bandwidth mapping error (relative map slope error), the arctangent formula optimization yields
The performance of this formula is shown in Fig.E.8. It tends to follow the performance of the optimal least squares map parameter even though the peak parameter error was minimized relative to the optimal Chebyshev map. At 54 kHz there is an additional 3% bandwidth error due to the arctangent approximation, and near 10 kHz the additional error is about 4%; at other sampling rates, the performance of the RBME arctangent approximation is better, and like (E.3.5), it is extremely accurate at 41 kHz.
Next Section:
Filter Design Example
Previous Section:
Error Significance