Monotonicity Constraint

We can constrain the positive-time part of the window to be monotonically decreasing:

$\displaystyle \Delta h_{i}=h\left(i+1\right)-h\left(i\right)\leq 0\qquad i=1,\ldots ,L-1$ (4.77)

In matrix form,
$\displaystyle \left[\begin{array}{ccccc}
-1 & 1 & & & 0\\
& -1 & 1 & & \\
& & \ddots & \ddots & \\
0 & & & -1 & 1\end{array}\right]h$ $\displaystyle \le$ $\displaystyle 0,$  

or,

$\displaystyle \zbox {\mathbf{D}\,h \le 0.}$ (4.78)

See Fig.3.38.

Figure 3.38: Monotonic Chebyshev Window
\includegraphics[width=\twidth,height=6.5in]{eps/print_monotonic_chebwin}


Next Section:
L-Infinity Norm of Derivative Objective
Previous Section:
Remez Exchange Algorithm