Shift Theorem for the DTFT
We define the shift operator for sampled signals
by
![]() |
(3.18) |
where




The shift theorem states3.5
![]() |
(3.19) |
or, in operator notation,
![]() |
(3.20) |
Proof:
![\begin{eqnarray*}
\hbox{\sc DTFT}_\omega[\hbox{\sc Shift}_l(x)] &\isdef & \sum_{n=-\infty}^{\infty}x(n-l) e^{-j \omega n} \\
&=& \sum_{m=-\infty}^{\infty} x(m) e^{-j \omega (m+l)}
\qquad(m\isdef n-l) \\
&=& \sum_{m=-\infty}^{\infty}x(m) e^{-j \omega m} e^{-j \omega l} \\
&=& e^{-j \omega l} \sum_{m=-\infty}^{\infty}x(m) e^{-j \omega m} \\
&\isdef & e^{-j \omega l} X(\omega)
\end{eqnarray*}](http://www.dsprelated.com/josimages_new/sasp2/img158.png)
Note that
is a linear phase term, so called
because it is a linear function of frequency with slope equal to
:
![]() |
(3.21) |
The shift theorem gives us that multiplying a spectrum





Next Section:
Convolution Theorem for the DTFT
Previous Section:
Symmetry of the DTFT for Real Signals