Two-Channel Critically Sampled Filter Banks
Figure 11.15 shows a simple two-channel band-splitting filter bank, followed by the corresponding synthesis filter bank which reconstructs the original signal (we hope) from the two channels. The analysis filter is a half-band lowpass filter, and is a complementary half-band highpass filter. The synthesis filters and are to be derived. Intuitively, we expect to be a lowpass that rejects the upper half-band due to the upsampler by 2, and should do the same but then also reposition its output band as the upper half-band, which can be accomplished by selecting the upper of the two spectral images in the upsampler output.
The outputs of the two analysis filters in Fig.11.15 are
(12.16) |
Using the results of §11.1, the signals become, after downsampling,
(12.17) |
After upsampling, the signals become
After substitutions and rearranging, we find that the output is a filtered replica of the input signal plus an aliasing term:
For perfect reconstruction, we require the aliasing term to be zero. For ideal half-band filters cutting off at , we can choose and and the aliasing term is zero because there is no spectral overlap between the channels, i.e., , and . However, more generally (and more practically), we can force the aliasing to zero by choosing synthesis filters
In this case, synthesis filter is still a lowpass, but the particular one obtained by -rotating the highpass analysis filter around the unit circle in the plane. Similarly, synthesis filter is the -rotation (and negation) of the analysis lowpass filter on the unit circle. For this choice of synthesis filters and , aliasing is completely canceled for any choice of analysis filters and .
Referring again to (11.18), we see that we also need the
non-aliased term to be of the form
where is of the form
(12.21) |
That is, for perfect reconstruction, we need, in addition to aliasing cancellation, that the non-aliasing term reduce to a constant gain and/or delay . We will call this the filtering cancellation constraint on the channel filters. Thus perfect reconstruction requires both aliasing cancellation and filtering cancellation.
Let denote . Then both constraints can be expressed in matrix form as follows:
(12.22) |
Substituting the aliasing-canceling choices for
and
from
(11.19) into the filtering-cancellation constraint (11.20), we
obtain
The filtering-cancellation constraint is almost satisfied by ideal zero-phase half-band filters cutting off at , since in that case we have and . However, the minus sign in (11.23) means there is a discontinuous sign flip as frequency crosses , which is not equivalent to a linear phase term. Therefore the filtering cancellation constraint fails for the ideal half-band filter bank! Recall from above, however, that ideal half-band filters did work using a different choice of synthesis filters, relying instead on their lack of spectral overlap. The presently studied case from (11.19) arose from so-called Quadrature Mirror Filters (QMF), which are discussed further below. First, however, we'll look at some simple special cases.
Next Section:
Amplitude-Complementary 2-Channel Filter Bank
Previous Section:
Multirate Noble Identities