DSPRelated.com
Forums

damping in biquads for butterworth filter?

Started by esfield April 8, 2009
On Apr 8, 1:45&#4294967295;pm, Jerry Avins <j...@ieee.org> wrote:
> esfield wrote: > > Yeah, I just realized that.... so what are the other constraints on these > > values that force them to be the ones Vlad gave? > > Math. All low-pass Butterworth filters have all derivatives zero at f=0. > That gives a 4th-order filter the response 1 + x^4 where x = w/w0. Solve > for the roots. > > Jerry > -- > Engineering is the art of making what you want from things you can get. > &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;
Actually a small correction is needed. A Nth order Butterworth filter has a response of 1/sqrt(1+omega^2N) So we actually start with 2*N roots of -1 and just use the roots on the left hand plane to form our polynomial. For example, a 2nd order butterworth We start with the 4 roots of -1 on the unit circle. These are at angles 90,135,225, and 315 degrees. The ones on the LHP are simply at 135 and 225 degrees or in radians these are 3pi/4 and 5pi/4 So we combine the poles in the left hand plane as conjugate pairs so as to result in a polynomial with real valued coefs. For our 2nd order case we only have one pair to combine. But our poly is simply the product of (s-root) terms. For our specific case: (s-exp(j3pi/4))(s-exp(j5pi/4) which simplfies to s^2+sqrt(2)s+1 For odd order cases you see that one of the roots is -1 so we have a (s-(-1)) term. Of course this simplifies to s+1 which is a factor of all odd order normalized Butterworth filters. IHTH, Clay
esfield wrote:
> Thanks again Jerry. Please bear with me a bit longer! > > That gives pole locations at sqrt(j), sqrt(-j), -1/sqrt(j), -1/sqrt(-j). > > But, aren't these the pole locations for a second order butterworth? > There are four poles but we only use the left half plane, so this only > gives two poles so this is a second order filter, right? > > Also, it's not obvious to me how the Q values come from the pole > locations. Can you please enlighten me?
I omitted a sqrt. Go with Clay's formulation.
> Clay, thanks for the link. I wish I'd had that reference when I started! > Just a quick question: to transform the lpf into hpf, all I do is change > the '1' in each numerator to 's^2', right?
Jerry -- Engineering is the art of making what you want from things you can get. &#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;&#4294967295;