DSPRelated.com
Tutorials
The 2025 DSP Online Conference

Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka

David Norwood November 25, 2015

For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2]. In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.


Multimedia Processing with FFMPEG

Karthick Kumaran A S V November 16, 2015

FFMPEG is a set of libraries and a command line tool for encoding and decoding audio and video in many different formats. It is a free software project for manipulating/processing multimedia data. Many open source media players are based on FFMPEG libraries.


Approximating the area of a chirp by fitting a polynomial

Alexandre de Siqueira November 15, 20158 comments

Once in a while we need to estimate the area of a dataset in which we are interested. This area could give us, for example, force (mass vs acceleration) or electric power (electric current vs charge).


GPS - some terminology!

Vivek Sankaravadivel October 30, 20153 comments

Hi!

For my first post, I will share some information about GPS - Global Positioning System. I will delve one step deeper than a basic explanation of how a GPS system works and introduce some terminology.

GPS, like we all know is the system useful for identifying one's position, velocity, & time using signals from satellites (referred to as SV or space vehicle in literature). It uses the principle of trilateration  (not triangulation which is misused frequently) for...


The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201517 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct


Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1

Cedron Dawg May 21, 20151 comment
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...


Exact Frequency Formula for a Pure Real Tone in a DFT

Cedron Dawg April 20, 20152 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...


DFT Bin Value Formulas for Pure Real Tones

Cedron Dawg April 17, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:


DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

Cedron Dawg April 10, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...


The Exponential Nature of the Complex Unit Circle

Cedron Dawg March 10, 20155 comments
Introduction

This is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex...

In Search of The Fourth Wave

Allen Downey September 25, 20214 comments

Last year I participated in the first DSP Related online conference, where I presented a short talk called "In Search of The Fourth Wave". It's based on a small mystery I encountered when I was working on Think DSP.  As you might know:

 A sawtooth wave contains harmonics at integer multiples of the fundamental frequency, and their amplitudes drop off in proportion to 1/f.  A square wave contains only odd multiples of the fundamental, but they also drop off...

The Discrete Fourier Transform of Symmetric Sequences

Neil Robertson December 8, 2024

Symmetric sequences arise often in digital signal processing. Examples include symmetric pulses, window functions, and the coefficients of most finite-impulse response (FIR) filters, not to mention the cosine function. Examining symmetric sequences can give us some insights into the Discrete Fourier Transform (DFT). An even-symmetric sequence is centered at n = 0 and xeven(n) = xeven(-n). The DFT of xeven(n) is real. Most often, signals we encounter start at n = 0, so they are not strictly speaking even-symmetric. We’ll look at the relationship between the DFT’s of such sequences and those of true even-symmetric sequences.


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

Cedron Dawg May 12, 2017
Introduction

This is an article that is a another digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). Although it is not as far off as the last blog article.

A new family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. They are a generalization of Equation (1) from Rick Lyons' recent blog article titled "Sinusoidal Frequency Estimation Based on Time-Domain Samples"[1]. ...


How the Cooley-Tukey FFT Algorithm Works | Part 3 - The Inner Butterfly

Mark Newman November 25, 2024

At the heart of the Cooley-Tukey FFT algorithm lies a butterfly, a simple yet powerful image that captures the recursive nature of how the FFT works. In this article we discover the butterfly’s role in transforming complex signals into their frequency components with efficiency and elegance. Starting with the 2-point DFT, we reveal how the FFT reuses repeated calculations to save time and resources. Using a divide-and-conquer approach, the algorithm breaks signals into smaller groups, processes them through interleaving butterfly diagrams, and reassembles the results step by step.


Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

Cedron Dawg July 20, 2017
Introduction

This is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.

In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...


Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

Cedron Dawg November 6, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...


FIR Filter to Match Any Magnitude and Phase Response

Dan Boschen September 30, 20252 comments

This post details a technique for designing high quality FIR filters that match arbitrary magnitude and phase responses.


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

Cedron Dawg June 11, 20174 comments
Introduction

This is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...


An Alternative Form of the Pure Real Tone DFT Bin Value Formula

Cedron Dawg December 17, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving alternative exact formulas for the bin values of a real tone in a DFT. The derivation of the source equations can be found in my earlier blog article titled "DFT Bin Value Formulas for Pure Real Tones"[1]. The new form is slighty more complicated and calculation intensive, but it is more computationally accurate in the vicinity of near integer frequencies. This...


How the Cooley-Tukey FFT Algorithm Works | Part 2 - Divide & Conquer

Mark Newman November 18, 2024

The Fast Fourier Transform revolutionized the Discrete Fourier Transform by making it much more efficient. In part 1, we saw that if you run the DFT on a power-of-2 number of samples, the calculations of different groups of samples repeat themselves at different frequencies. By leveraging the repeating patterns of sine and cosine values, the algorithm enables us to calculate the full DFT more efficiently. However, the calculations of certain groups of samples repeat more often than others. In this article, we’re going to explore how the divide-and-conquer method prepares the ground for the next stage of the algorithm by grouping the samples into specially ordered pairs.


The 2025 DSP Online Conference