The Real Star of Star Trek

Rick Lyons September 25, 20168 comments

Unless you've been living under a rock recently, you're probably aware that this month is the 50-year anniversary of the original Star Trek show on American television. It's an anniversary worth noting, as did Time and Newsweek magazines with their special editions.

   

Over the years I've come to realize that a major star of the original Star Trek series wasn't an actor. It was a thing. The starship USS Enterprise! Before I explain my thinking, here's a little...


An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 20166 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...

Should DSP Undergraduate Students Study z-Transform Regions of Convergence?

Rick Lyons September 14, 201613 comments

Not long ago I presented my 3-day DSP class to a group of engineers at Tektronix Inc. in Beaverton Oregon [1]. After I finished covering my material on IIR filters' z-plane pole locations and filter stability, one of the Tektronix engineers asked a question similar to:

     "I noticed that you didn't discuss z-plane regions of      convergence here. In my undergraduate DSP class we      spent a lot of classroom and homework time on the  ...


Implementing Impractical Digital Filters

Rick Lyons July 19, 20162 comments

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...


An Astounding Digital Filter Design Application

Rick Lyons July 7, 20169 comments

I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the "ASN Filter Designer." After experimenting with a demo version of this filter design software I was so impressed that I simply had publicize it to the subscribers here on dsprelated.com.

What I Liked About the ASN Filter Designer

With typical filter design software packages the user enters numerical values for the...


The Swiss Army Knife of Digital Networks

Rick Lyons June 13, 20163 comments

This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications. 

Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...


Digital Envelope Detection: The Good, the Bad, and the Ugly

Rick Lyons April 3, 20166 comments

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus of envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...


A Useful Source of Signal Processing Information

Rick Lyons March 23, 20168 comments

I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.

The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page

and click the red 'SEARCH...


Optimizing the Half-band Filters in Multistage Decimation and Interpolation

Rick Lyons January 4, 201615 comments

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief Review

Figure 2(a) depicts the process of decimation by an integer factor D. That...


Implementing Simultaneous Digital Differentiation, Hilbert Transformation, and Half-Band Filtering

Rick Lyons November 24, 20152 comments

Recently I've been thinking about digital differentiator and Hilbert transformer implementations and I've developed a processing scheme that may be of interest to the readers here on dsprelated.com.

This blog presents a novel method for simultaneously implementing a digital differentiator (DD), a Hilbert transformer (HT), and a half-band lowpass filter (HBF) using a single tapped-delay line and a single set of coefficients. The method is based on the similarities of the three N =...


Understanding the 'Phasing Method' of Single Sideband Demodulation

Rick Lyons August 8, 201217 comments

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

  • synchronous detection,
  • phasing method,
  • Weaver method, and
  • filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...


Free DSP Books on the Internet

Rick Lyons February 24, 200824 comments

While surfing the "net" I have occasionally encountered signal processing books whose chapters could be downloaded to my computer. I started keeping a list of those books and, over the years, that list has grown to over forty books. Perhaps the list will be of interest to you.

Please know, all of the listed books are copyrighted. The copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As...


Computing FFT Twiddle Factors

Rick Lyons August 8, 201013 comments

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...


A Quadrature Signals Tutorial: Complex, But Not Complicated

Rick Lyons April 12, 201313 comments

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j operator the "shadow of...


The DFT Magnitude of a Real-valued Cosine Sequence

Rick Lyons June 17, 20144 comments

This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.

To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...


Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

Rick Lyons December 14, 20116 comments

There are two code snippets associated with this blog post:

Flat-Top Windowing Function for the Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...


Sum of Two Equal-Frequency Sinusoids

Rick Lyons September 4, 20142 comments

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...


A Differentiator With a Difference

Rick Lyons November 3, 20076 comments

Some time ago I was studying various digital differentiating networks, i.e., networks that approximate the process of taking the derivative of a discrete time-domain sequence. By "studying" I mean that I was experimenting with various differentiating filter coefficients, and I discovered a computationally-efficient digital differentiator. A differentiator that, for low fequency signals, has the power of George Foreman's right hand! Before I describe this differentiator, let's review a few...


Linear-phase DC Removal Filter

Rick Lyons March 30, 200820 comments

This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...


Computing the Group Delay of a Filter

Rick Lyons November 19, 200817 comments

I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.

Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...