## The Damped Plucked String

Without damping, the ideal plucked string sounds more like a cheap electronic organ than a string because the sound is perfectly periodic and never decays. Static spectra are very boring to the ear. The discrete Fourier transform (DFT) of the initial ``string loop'' contents gives the Fourier series coefficients for the periodic tone produced.

The simplest change to the ideal wave equation of Eq.(6.1) that provides damping is to add a term proportional to velocity:

Here, can be thought of as a very simple friction coefficient, or resistance. As derived in §C.5, solutions to this wave equation can be expressed as sums of left- and right-going

*exponentially decaying*traveling waves. When , we get non-decaying traveling waves as before. As discussed in §2.2.2, propagation losses may be introduced by the substitution

*lumping*of propagation loss at one point along the waveguide serves to minimize both computational cost and round-off error. In general finite difference schemes, such a simplification is usually either not possible or nonobvious.

#### Computational Savings

To illustrate how significant the computational savings can be, consider the simulation of a ``damped guitar string'' model in Fig.6.11. For simplicity, the length string is rigidly terminated on both ends. Let the string be ``plucked'' by initial conditions so that we need not couple an input mechanism to the string. Also, let the output be simply the signal passing through a particular delay element rather than the more realistic summation of opposite elements in the bidirectional delay line. (A comb filter corresponding to pluck position can be added in series later.)

In this string simulator, there is a loop of delay containing
samples where is the desired pitch of the string. Because
there is no input/output coupling, we may lump *all* of the losses at
a single point in the delay loop. Furthermore, the two reflecting
terminations (gain factors of ) may be commuted so as to cancel them.
Finally, the right-going delay may be combined with the left-going delay to
give a single, length , delay line. The result of these inaudible
simplifications is shown in Fig. 6.12.

If the sampling rate is kHz and the desired pitch is
Hz, the loop delay equals samples. Since delay lines are
efficiently implemented as circular buffers, the cost of implementation is
normally dominated by the loss factors, each one requiring a multiply
every sample, in general. (Losses of the form ,
, etc., can be efficiently implemented using shifts and
adds.) Thus, the consolidation of loss factors has reduced computational
complexity by *three orders of magnitude,* *i.e.*, by a factor of
in this case. However, the physical accuracy of the simulation has
not been compromised. In fact, the *accuracy is improved* because
the round-off errors per period arising from repeated multiplication
by have been replaced by a single round-off error per period
in the multiplication by .

**Next Section:**

Frequency-Dependent Damping

**Previous Section:**

The Ideal Struck String