Free Books

Practical Considerations

While the digital mass simulator has the desirable properties of the bilinear transform, it is also not perfect from a practical point of view: (1) There is a pole at half the sampling rate ($ z=-1$). (2) There is a delay-free path from input to output.


The first problem can easily be circumvented by introducing a loss factor $ g$, moving the pole from $ z=-1$ to $ z=-g$, where $ g\in[0,1)$ and $ g\approx1$. This is sometimes called the ``leaky integrator''. The second problem arises when making loops of elements (e.g., a mass-spring chain which forms a loop). Since the individual elements have no delay from input to output, a loop of elements is not computable using standard signal processing methods. The solution proposed by Alfred Fettweis is known as ``wave digital filters,'' a topic taken up in §F.1.
Next Section:
Outline
Previous Section:
Finite Difference Approximation vs. Bilinear Transform