Delay estimation by FFT
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippetThis article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.
IntroductionThere are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...
Polyphase filter / Farrows interpolation
Hello,
this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.
A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf
The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.
The picture below shows samples (black) representing...
Maximum Likelihood Estimation
Any observation has some degree of noise content that makes our observations uncertain. When we try to make conclusions based on noisy observations, we have to separate the dynamics of a signal from noise.
Learn to Use the Discrete Fourier Transform
Discrete-time sequences arise in many ways: a sequence could be a signal captured by an analog-to-digital converter; a series of measurements; a signal generated by a digital modulator; or simply the coefficients of a digital filter. We may wish to know the frequency spectrum of any of these sequences. The most-used tool to accomplish this is the Discrete Fourier Transform (DFT), which computes the discrete frequency spectrum of a discrete-time sequence. The DFT is easily calculated using software, but applying it successfully can be challenging. This article provides Matlab examples of some techniques you can use to obtain useful DFT’s.